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Fundamental Metabolomics

Sample amount Metabolite extraction
" biofluids (20-100uL) T polar: MeOH : H,0 (4:1)
= cell cultures (~ 1.108 cells) ff lipid: CH,CI, : MeOH (1:1)
» tissues (~ 10mg fresh weight) option: SPE
Metabolism quenching Sample normalisation
snap freezing (liquid N,) ~ creatinine
’ A:E ~ protein / DNA content

heat fixation ~ dry weight

= 2

Sample storage Data acquisition
. Pt
W freezing -80°C h [ targeted LC-MS/MS

\/ m untargeted LC-MS/MS

Experimental Design




Fundamental Metabolomics Advanced

Pre-analytical m Post-analytical

Sample amount Metabolite extraction Raw data processing
" biofluids (20-100uL) T polar: MeOH : H,0 (4:1) ‘g peak detection
cell cultures (~ 1.106 cells) %4 lipid: CH,CI, : MeOH (1:1) =@ RT correction /\%?;S*V
£ tissues (~ 10mg fresh weight) option: SPE % peak (re)grouping
. = . = . =
Metabolism quenching Sample normalisation ... Datacuration .
snap freezing (liquid N,) A:E : g:i?éii:ir;% N @ noise filtering Metabo .-ools
heat fixation ~ dry weight +_H metabolite 1D MliaTll)_:aN
‘ ‘ ‘ Meta?f)Data
Sample storage Data acquisition Statistical analyses
&) freezing -80°C m targeted LC-MS/MS S multivariate SIMCA
m untargeted LC-MS/MS : . univariate @

\/

Experimental Design Biology



o« Fundamental
o Metabolomics

Genomics is a discipline in
which the complete set of DNA
within cells or an organism is analyzed.

Metabolomics is a discipline in
which the complete set of metabolites
within cells or an organism is analyzed.
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Online

Nature Methods 2017

Cell Metabolism 2018
Nature Protocols 2018
Cell Chemical Biology 2018
Nature Biotechnology 2018
Nature Chemical Biology 2018
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Multiple Sclerosis
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Precedence

Metabolite System Journal

Oleamide Sleep Science 1995
Neuroprotectin D1 Stem Cell Regulation Nature Chem. Biology 2010
TMAO Cardiac Disease Nature 2011
Nicotinamide Stem Cell Regulation Nature Chem. Biology 2013
Dimethylsphingosine Chronic Pain Nature Chem. Biology 2013
Pl (20:4/20:4) Pathogen Killing Journal of Immunology 2013
FAHFAs Type 2 Diabetes Cell 2014
CMP-furanpropan. Acid Diabetes Cell Metabolism 2014
TMAO Cardiac Disease Cell 2015
Polyamines/Lipids Immuno-oncology Cell Metabolism 2015
Hexadecenoic acid Cardiovascular Disease Cell Chemical Biology 2016
Taurine Multiple Sclerosis Nature Chem. Biology 2018

ltaconate Anti-Inflammatory Nature 3/2018 Nature 4/2018
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Gene expression

* Signal transduction control of
transcription

* Epigenetic regulation by cofactors
of chromatin enzymes

RNA metabolism

* Metabolite sensing by
riboswitches
* Post-transcriptional modifications

Protein activity

» Allosteric regulation of
receptors/transcription factors

» Catalysis by co-factors/substrates

* Post-translational modifications

Metabolomics
Activity

Screenin
Phenotype -



Metabolomics
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What do we wantto do ?

*Compare sample between different classes
and analyse which metabolites are
responsible/contributing to that difference

* Run some statistics
|dentify compounds

*Understand biology



What are we dealing with
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How to deal with it?

*Peak Detection... Easy

200000
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Intensity
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How to deal with it?

leraty

4000 000 6200
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1000 2000 00
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*Peak Detection... Easy .... Maybe not
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What does current software do?

Analytica Chimica Acta

Available online 4 May 2018

In Press, Accepted Manuscript —Note to users

Comprehensive evaluation of untargeted metabolomics data
processing software in feature detection, quantification and
discriminating marker selection

Zhucui Li>-¢, Yan Lu®® 9, Yufeng Guo®, Haijie Cao®, Qinhong Wang®, Wenging Shui®: ¢ & . &
+ Show more

https://doi.org/10.1016/j.aca.2018.05.001 Get rights and content

Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular
profile data. BMC Bioinformatics 11, 395 (2010).

R Tautenhahn, R., Patti, G. J., Rinehart, D. & Siuzdak, G. E. XCMS Online: a web-based platform to process untargeted metabolomic data. Analytical chemistry 84, 5035—
5039 (2012).

Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Meth 12, 523-526 (2015).



What does current software do?

Philadelphia Police &
@PhillyPolice

Please don't call 911 to ask if we're hearing "Laurel" or
"Yanny". The only thing we hear is the creation of another bad
hashtag. (And Laurel. We're definitely hearing Laurel).

5:31 AM - May 16, 2018

Q 4,119 O 1,513 people are talking about this o

Hear Both Yanny and Laurel

Click to pause

Iyl
I T T T T U T |
Laurel Yanny

Click here to submit
when you first hear the
words change




General workflow

Peak Detection

Grouping
Clustering of Peaks
Across replicates

N\

Retention time
Alignment

)’

Statistical Analysis




mzMine 2 — peak detection

* Breaks the collection of peaks into 3 steps
* Mass Detection

 Chromatogram building h MZmine 2

 Peak Deconvolution

* Mass detection is centroiding of the data

relative intensity

16 Alanines
C48 HEB2 N16 O17

* MzMine has many algorithms —
* Basics are to look for a peak and
assign the centre as the centroid
* NB m/z domain only

100.00

50.00 -

0.00 T T
11539 11559 1157.9 11599

miz




mzMine 2 — peak detection

* Breaks the collection of peaks into 3 steps
* Mass Detection

 Chromatogram building h MZmine 2

 Peak Deconvolution

*Connect an m/z slice by intensity with the
most intense ions first

e Look for distributions within a time window.

X m/z

* Re-order the slice by time and apply
a filter to integrate



MS-DIAL — peak detection

*Peak detection
*Peak spotting

"N




MS-DIAL — peak detection

e Peak detection
*Peak spotting

Data point ——e—— First derivative o] Second derivative —&——

lon counts

9000 y
Peak top by first derivative and 'BF
8000
7000
6000

5000

4000

3000
Peak edge by AF and FF

2000

Peak edge by back tracing
1000

18 20 22 b 26 28 30




XCMS — matched Filter

Extracted lon Chromatogram: 268.1 m/z

Filter Function
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Seconds

Combined Chromatogram: 268.1 — 268.2 m/z
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MS-DIAL — peak detection

a

m/z

*Peak detection
*Peak spotting
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100.25
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0 0 )
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m/z
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Nature Methods: doi:10.1038/nmeth.3393

4

\ Retention time

x newenuun ume

e" Higher is keptv, i.e. either is removed.

v v o

»
Ll

Retention time

Scan number Retention time [min]  Base peak m/z Base peak intensity
1 0.1 100.2054 1

2 0.12 100.2053 10

3 0.14 100.2053 5

4 0.16 100.2052 50

5 0.18 100.2051 200

6 0.2 100.2054 1500

7 0.22 100.2054 3000

8 0.24 100.2054 1700

9 0.26 100.2053 180

10 0.28 100.205 60

200 Base peak chromatogram within 0.1 Da

MS-DIAL




XCMS — centWave

e LC-MS traces are like Missiles!

@YoUnGeStEr




XCMS — CentWave o N/

\cms

Online

Tracking Missiles is
like tracking LC-MS traces

Trace backward along the trace
. * This will define the area of the ‘bin’

6000

2000
1

o ‘ |Mll[

130 135 145 150 155

1. Tautenhahn, R., Béttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504 (2008).



XCMS - CentWave

Online
0 100 20 3 &€ 5% & 70 80 w0 100
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General workflow

Peak Detection

Grouping
Clustering of Peaks
Across replicates

N\

Retention time
Alignment

)’

Statistical Analysis




XCMS - Grouping

Density algorithm
First time using all files

_OO kS fo r C | OS |y Detected features for mz:130.1-130.2and rt:305-315
clustered/dense peaks
across multiple files

*Once grouped togethe
in xcms terms they are
a features )

130.20
|

This is a well behaved group
with a peak in each replicate
| for each class

130.18

max

oge o

130.16
|

130.14

130.12
|

130.10
|

306 308 310 312 314

Retention time (sec)



All - Grouping

: . , LA MZmine 2
*mzMine uses grouping to also align -
simtanously. NC

*This works on a nearest neighbor system
* MS-Dial reused this algorithm

*A reference spectra is setup by finding
features that closely grouped together.

e Features that are further are scored to be in
that group

Live demo of algorithm
*NB also alignment for MS-Dial and mzMine



General workflow

Peak Detection

Grouping
Clustering of Peaks
Across replicates

N\

Retention time
Alignment

)’

Statistical Analysis




XCMS - Retention time alignment

*Peak groups alienment
e Particular to XCMS

*Uses internal features that are naturally well
grouped as anchors

*Uses a local regression (loess) between these
anchors to find deviation profile

Retention Time Deviation vs. Retention Time

055&5ample 6
+ © 062§ample 6
=+ —— 074.3ample 6
>— 082°Sample 6
s— 083 Sample 6
- A~ 007 Sample 7

+ 065 Sample 7
088 Bample 7

A 009 Sample 8
012 Sample 8
028 Sample 8
033 Sample 8
045 Sample 8
067 Sample 8

]

|

Retention Time Deviation

25 -20 -15 -10 -05 00 0.5




XCMS - Retention time alignment

 Obiwarp algorithm

*Retention time correction based on spectra
similarity

*No initial grouping needed
e Re-reads raw files

*Warps the chromatogram to a median profile

* Acts as a mold to which other chromatograms
are warped

* A Dynamic programming technique to find
paths of greatest similarity between each.

*The path is the deviation profile

*Similar technique to blast transcript alignments

*John T. Prince and Edward M. Marcotte Chromatographic Alignment of ESI-LC-MS Proteomics Data Sets by Ordered Bijective Interpolated Warping Analytical
Chemistry, 2006 78 (17), 6140-6152



General workflow

Peak Detection

Grouping
Clustering of Peaks
Across replicates

N\

Retention time
Alignment

)’

Statistical Analysis




Results ...

-

Online

Was the software able to find
the compound?

Consensus True feature ID
Total features True features s
features rate” (%)

Targeted - - 836 -

g9mp°“"d 10,525 10,525 748 895
QE HF IScoverer

dataset Untargeted MS-Dial 21,545 17.726 799 95.6
MZmine 2 20,021 18,871 769 92.0
XCMS 35,215 30,680 820 98.1




Online

Was the software able to find
quantify the compound?

Accurately Quantification True False

quantified true = accuracy rate  discriminating  discriminating

features (%) markers markers
Targeted 100 50 0
oF HF Compound 482 64.4 41 111
dataset | Untargeted i 654 81.9 42 42
MZmine 2 761 99.0 48 3
XCMS 731 89.2 45 51




Conclusions and questions

*Different software different results...
*Personal taste (to some extent)

*Some software’s do more than what was
discussed.
* SWATH processing — MS-DIAL
* ADAP algorithm — mzMine2
* System biology — XCMS Online
*Etc...
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Metabolite Annotation

- Overview
- Annotation strategies
1. MS?! pseudo-spectra extraction
2. Adduct mass rules
3. Biochemical knowledge
4. Use and integration of tandem MS data
5. Retention time calibration
- Annotation in practice
1. CAMERA
2. xMSannotator
3. Everest
4. eRah (GC/MS)



The Untargeted Metabolomics Workflow

Untargeted analysis

LC-MS

Biological pun— Feature List
Samples » ﬂ ' / ' (MS?)

Data analysis

Remove _ -
Feature List Analytical Hypothesis False discovery Fold
I Variation testing rate correction change
Data
Annotation Targeted analysis
‘ IDENTIFICATION
qTOF | l
x
Significant \- .
Features QUANTIFICATION

e —. e CMS
Y gt =) /mFem




Overview

- LC-MS data: highly dimensional and redundant

[M+H]T
m/z 118.086

[M+Na]™
[M+H-H,0]T ‘

|
T N

In-source
fragments

Isotopes



Overview

- LC-MS data: highly dimensional and redundant
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Overview

- Annotation

M+H M+Na

M+H-H,0 !
0010100111010110
1010011011000101

Biological
information

Valine
M+Na M+H Tyrosine

Leucine

Annotation is defined as the process of
“noting” and thus, assigning each observed
feature with their identity.



Annotation strategies

- Summary

. MS* pseudo-spectra extraction
. Adduct mass rules

1

2

3. Biochemical knowledge

4. Use and integration of tandem MS data
5

. Retention time calibration



Annotation strategies

- MS?! pseudo-spectra extraction

RT RT RT



Annotation strategies

- MS?! pseudo-spectra extraction

Peak Shape Correlation

Strong correlation: Weak correlation:
group peaks do not group peaks

v X

10



Annotation strategies

- MS! pseudo-spectra extraction

Peak Shape Correlation

CAMERA

(d) Chromatographic profiles

Extracted lon Chromatograms

Intensity

Intensity
1000

500
L

- /_,_«./4,;#"""“'\ N— ’_:7,:1311
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o - 24 |
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Picture from C. Kuhl et al., Anal. Chem., 84 (2012) 283-289

T T
364 366 368
Retention Time [s]
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Annotation strategies

- MS?! pseudo-spectra extraction

Peak Abundance Correlation

Sample 1

D
B

0O

m/z

Picture from Domingo-Almenara et al., Anal. Chem.,90 (2018)



Annotation strategies

- Adduct mass rules

21.982 Da

w
=
©
O
N
O
Q

m/z

- EE EE s .
- e e e .

18.010 Da

13



Annotation strategies

- Adduct mass rules

IM+H]T
m/z 118.086

[M+Na]™

[M+H-H,0]™T

|

|
LV

400

Intensity®

In-source
fragments 200

! Hi l l

et T
-1000 =500

Relationship Type

= Heteromer
Cross Polarity
Charge Carrier

Isotope
=Self Mer or Neutral Loss

|

Lﬂjll lu

500 1000

Mass to Charge Ratio (m/2)

N. G. Mahieu et. al. Defining and Detecting Complex Peak Relationships in Mass SpectralData: The
Mz.unity Algorithm.Anal. Chem. 88 (2016) 9037-9046
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Annotation strategies

- Biochemical knowledge Biotransformations

List of features Hits after mass search -

RT miz HO
s2 27401 — (CHOND 2 g E OH
91 19606 >  CeHiO; S ® HO, ‘ oH o + HO,4P
i =

1.27 194'.06 ———————»  CgH;(N,O, ..% § ¥ \// <

S < A 7\

R z

OH

o

(&]

(]

O -«

[

(@]

O

3

O
o
(&]

o) ©

8= )

() c

5 o

O 3
3
O]
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Picture from Domingo-Almenara et al., Anal. Chem.,90 (2018)



Annotation strategies

- Biochemical knowledge  Projection onto pathways

Assumption: if a list of putative identifications
are “true”, these should reflect a biological
activity and thus show an enrichment on local
pathway regions

Li et al., PLoS Comput. Bio., 9(2013) e1003123 16
Huan et al., Nat. Meth., 14 (2017) 461-462



Annotation strategies

- Biochemical knowledge  Projection onto pathways

Library search
Metabolite list

100,000
metabolites???

Feature List ead
10,000 features = METUN: i *

mzRT M118T56: 118.086

, 4-Methylamino-butyrate, Valine, Norvaline,...

Hypothesis: 4-Methylamino-butyrate ?



Annotation strategies

- Biochemical knowledge

Projection onto pathways

Succinate

Fumarate

[M+H]*
m/z 118.086

4-Methylaminobutyrate

Maleate
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Annotation strategies

- Biochemical knowledge  Projection onto pathways

Library search

' =S Metabolite list
Feature List SR

10,000 features = %‘}METL'N * 100,(?00
metabolites???

sSeF

mzRT M118T56: 118.086

, 4-Methylamino-butyrate, Valine, Norvaline,...

Hypothesis: \Valine ?



Annotation strategies

- Biochemical knowledge Projection onto pathways

[M+H]* mzRT M132T118
m/z 118.086 /
Valine Leucine

Pyruvate

/

mzRT M89T76

mzRT M132T120

Isoleucine

Thraonine 2-Oxobutanoate

f

mzRT M120T113

20



Annotation strategies

- Use and integration of tandem MS data

15 a Number of fragments
[ Positive
] Negative f
; [M+H]T
MS m/z 118.086
5 [M+Na]t
8 [M+H-H,01*
3
©
: v _| |
S 01234567 89101112131415+ ~
S &
(]
g
Q
21

Picture from Domingo-Almenara et al., Anal. Chem., 90 (2018)



Annotation strategies

- Use and integration of tandem MS data

b Acetylaspartic acid (-) C  Glycylproline (+)
e ﬂ 115.003 70.065  116.070
P g -
A ®
WCNs 174.040 [M+H]-HCOOH
nlin
1 Online 2 L / [M+H]"
MS' features @ h [M-H] -CO, 173.094
£ 59014 130.050 127.087
= 11 1
2 71.013 l
2 ! 127.086
© 115.002
_ MS/MS spectra S 50014 A 70.066
=55 METLIN
174.040 116.071 173.092
| T | 1T T T |
50 100 150 200 50 100 150 200

m/z m/z



Annotation strategies

- Use and integration of tandem MS data

IDENTIFICATION

qTOF »

Experimental libraries... only 5% of MS/MS spectra
¢

Hadb

The Human Metabolome Database

Alternative... in silico prediction

L 7 N

/
N
j\ | /> Structure In silico
7 >N N MS/MS spectra ‘
|

CHs )3



Annotation strategies

- Use and integration of tandem MS data

Alternative... in silico prediction

O CHj @

/
N
j\ | /> Structure In silico
0% >N N MS/MS spectra ‘
|

CHs

Alternative... spectral characterization or de novo identification

O /CH3 f\

HN N
)\ | /> Structure Experimental
oy
C

MS/MS spectra ‘

Hs
MS-FINDER, CSI:FinderID, iMet...

Tsugawa, et al. Anal. Chem. 2016, 88, 7946-7958
Diihrkop, et al. Proc. Natl. Acad.Sci.U. S. A. 2015, 112, 12580-12585 24
Aguilar-Mogas, et al., Anal. Chem. 2017,89,3474-3482



Annotation strategies

- Retention time calibration

b
O

Prediction
OH -  software/database — > 09 P

NH,

Metabolite
Structures

Molecular descriptors

Experimental values +
(training set)

Alanine: 5.36 min Machine
Leucine: 4.32 min ) learning
Lactate: 5.62 min

Molar

Boiling

refractivity Point

Predicted values
(for any metabolite)

Alanine: 5.71 min
Leucine: 4.37 min
Lactate: 5.32 min
Glycine: 7.51 min
Ornithine: 8.23 min

25



Annotation strategies

- Retention time calibration

2.0 !
< _
(S £
g £ 1.5
3 =
=| w
w x
T ¥ 1.0
- —
— (o]
S h
E ® 051
T T T T 00- T T T T T
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L =R
© -
E'l 7.5+ g
o} (/7]
o J
- 5.0 s
l } 59
E L
|-
251 i
o)
=
(14
T T T 0 T T T T
0.5 1.0 1.5 0.4 0.8 1.2 1.6
RT for RIKEN (min) RT for RIKEN (min)

Picture from Stanstrup et al., Anal. Chem. 2015, 87, 9421-9428



Annotation strategies

- Retention time calibration

RT for system F

P \\
= .
RT for system D
RT for systeﬁ1 B

/.05

< " o
s
&/ 1%
o/ 2 s,

RT for system A

RT predictions Models

27
Picture from Stanstrup et al., Anal. Chem. 2015, 87, 9421-9428



Annotation in practice

I Annotation with CAMERA

The R-package CAMERA is a Collection of
Algorithms for MEtabolite pRofile Annotation

28



Annotation with XCMS: CAMERA

(d) Chromatographic profiles \( ' I IS

ONLINE

4 N

Feature List

Retention Peak Shape
Time l
\\ //
CAMERA
/" “\
Adducts ‘ Isotopes

Annotated

\ Feature List /

29



Results

JOB#1129809 : E COLI TEST 11

(-]
£ & 4 Columns @ Hide isotopic peaks Page |4 of 77 »> »1| 100 % | View 1 - 100 of 7,655
featureidx ~ fold pvalue updown mzmed rtmed maxint dataset!_mean dataset2_me: isotopes adducts peakgroup usernotes
| 1 [ s.5| 4.28435e-12|DOWN 274.14o7| 29.51 4,720| 41,437[ 6,442 | ]417 | |
2 43 5.08127e-12| DOWN 88.0403 22.31 2,586 29222 6471 45
| 3 [ 2.1| 5.42721e-12|DOWN 567‘0298| 34.00 4,156| 47,41o| 23,472/ [513]M]2- | |141 | |
4 44]  9.90963e-12| DOWN 885.2532| 32.88 4,562 71,713 16,428 91
| 5 | 3.3| 1.10874e-11 |UP 135.0299 24.12 56,120| 272,828 905,968 | [34][M]- | |154 | |
6 31 1.54532e-11 DOWN 628.0571 33.50 1,522 14,656 adrr [M-2H+NaJ- 607.0/35
| 7 \ 107)  1.55786e-11 DOWN 145.0505 2153 15,408 193,164 18,493 | [46)M]- |[M-H]- 146.058 [M 24 | |
8 47| 2.52691e-11| DOWN 885.7549 32.87 3,562 52,349 11.11;‘ 91
[ 9 \ 4.6| 3.40119e-11 IDOWN 886.2566 32.87 2,166 28,494 6,486 [743]1M)2- [ ]91 [ |
10 25 3.62674e-11 DOWN 965.2527 33.48 804 5,940 2401 267
| 1" [ 2.4| 4.41243e-11 IDOWN 202.0722 32.62 6,326 81,181 33,351 |[M-H]- 203.081 [168 | |
12 36/  6.10290e-11| DOWN 486.2681 26.35 3,580 45,341 12441 [M+CI}- 451.299 [1 286
| 13 [ 3.z| 1.24508e-10 | DOWN 607.0775 33.49 5,o4o| 57,145 17,493 [522)IM}- |[M+CI]- 572.109 [I1267 | |
14 183.3]  1.28438e-10 UP 135.0315 12.70 8,302,420 3,666,297 651 .a1e.t3 [35]M]- [M-H- 136.044 |1
| 15 | e.2| 1.39947e-10|00WN 370.9553 21.23 1,140| 10,011 1,423 |[M-H—H20]— 389.9128 | |
16 1232]  1.89734e-10 UP 135.0313 11.99 8,302,420 3,031,654 373,359,453 | [38]M]- 2
| 17 | 34)  2.03586e-10 DOWN 608.0791 33.49 1420| 16,128 4,05 [522)M+1)- | 267 | |
18 45  2.93537e-10 DOWN 967.7846 32.99 2,364 27,631 6,406 41
| 19 \ 26| 3.98879-10 DOWN 875.7411 33.41 2242 19,723 7,907 | 145 | |
20 321  4.18445e-10 DOWN 210.0385 32.77 10,142 135,679 Py ) [M-2H+Na]- 189.021
| 21 [ 3.0[ 4.39714e-10|UP 232.1191 2255 1.530[ 3,983 1,451 [ ]468 [ |
22 55  4.72939-10 UP 273.1204 29.08 1,282 1,777 X ) [M-HJ-274.125 |221
| 23 [ 7.9| 5.26189e-10|00WN 133.0506 20.84 44,504] 604,836 76,456 [31][M]- | [15 | |
24 142 5.76048e-10 DOWN 246.0028 17.88 3,258 44,658 3,156 [M-H]-247.011 |31
| 25 [ 4.1| 6.23145e—10|DOWN 886.7567 32.88 1,054| 11,046 2,488 [743]M+1]2- | |91 | |
26 27| 7.30410e-10/UP 106.0226 23.90 3,242 27,271 73,488 |[12][M+1)- 174
| 27 | 45.o| 7.52775e-10|UP 136‘0340| 12.66| 659,846| 917,843| 41,307, 17|[35][M+1]- | |1 | |
28 54|  9.00549e-10 DOWN 526.2424 29.94 12,606 113,847 21.1;5 [462]M}- 275
| 29 | 33 9.20177e-10 DOWN 606.0746 33.50| 20,694 273,705| 83471 [M-H}-607.082 |35 | |
30 2.2 1.00253e-9| DOWN 541.3383 21.23 2,838 51,024 23475 28
| 31 \ 35 1.06396e-9|UP 1,068.3862| 4151 2,198| 5,016/ 17,487 [852)IM+ 1]- | 265 | |
o & 4 Columns @ Export Page |+ of 77 »> »i[100 3] Vipw 1- 100 of 7,655,

4
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Results

id mz It isotopes adduct pcC
65 | 176.04 280.09 4
76 | 136.05 280.43 | |[14][M+1]1+ 5
77 | 135.06 280.43 [14] M1+ 5
74 | 153.06 280.43 IM+H|+ 152.05437 5
75 | 175.04 280.43 [M+Nal|+ 152.05437 5
73 | 197.02 280.76 IM+2Na-H|+ 152.05437 | 5
78 | 377.74 286.15 6
79 | 732.5 286.49 6
83 | 488.32 286.82 M+Nal|+ 465.33205 7
82 | 466.34 286.82 IM+H|+ 465.33205 7




Home

A Highlights ~

Create Job~

~

[I.md New Dmnt]

OR (Select Dataset ]

(See File Formats for more information)

ID Dataset Name

Option
Search for

ppm
m/z absolute error

Option

ppm

adducts

Number of Files

0.015

10

View Results

Parameters

XCMS Public XCMS Institute

v Select Parameters
HPLC / Q-TOF
HPLC / UHD Q-TOF
UPLC / UHD Q-TOF
HPLC / UHD Q-TOF (HILIC, neg. mode)
HPLC / Bruker Q-TOF neg
UPLC / Bruker Q-TOF pos
UPLC / TripleTOF pos
HPLC / Orbitrap
HPLC / Orbitrap Il
UPLC / Orbitrap
HPLC / Single Quad
UPLC / Q-Exactive
HPLC / lon Trap
HPLC / Waters TOF
HPLC - UHD Qtof pairs

Value

isotopes + adducts

Value

[M+H]+

[M+NH4]+
[M+Na]+
[M+H-H20]+
[M+H-2H20]+
[M+K]+
[M+ACN+H])+
[M+ACN+Na]+
[M+2Na-H]+
[M+2H]2+

Stored Datasets

Account

Help ~ Logout [ test ]

Job ID: 1129853
User: test (16)
Job Name: (<1 2017-05-12.11:50 |[Edit
Datasets: 0

Parameter Set: 0

3

Click here to complete your job  ES{[sJal|88/¢]4]
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Annotation in practice

- Annotation with xMSannotator
analycl::im%?ll'listry

pubs.acs.org/ac

xMSannotator: An R Package for Network-Based Annotation of High-
Resolution Metabolomics Data

Karan Uppal,T Douglas 1. Walker,w and Dean P. Jones*’f

> library(xMSannotator) R

> library(openxlsx)

> metdRaw <- read.xlsx('XCMS.diffreport.MultiClass.xlsx’)

> multilevelannotation(dataA, mode="'pos', outloc=getwd(),
num_nodes=4)

Help can be accessed through: ?multilevelannotation

33



Annotation in practice

- Annotation with Everest
> library(everest) R

> metdRaw <- read.xlsx('XCMS.diffreport.MultiClass.xlsx’)

> ex <- evAnnotate(xcmsSet=xset3, data.table=NULL,
ion.mode="pos', min.correlation=0.6, maz.time.dist=1)
> anTab <- annoTable(ex)

> write.xlsx(anTab, file="anResults.xlsx")

Help can be accessed through: ?evAnnotate
vignette("everestManual", package="everest”) 34



row.names

M102T60
M162T60
M163T60
M164T60
M184T60
M110T268
M128T268
M134T7268
M135T268
M136T7268
M137T269
M138T269
M139T269
M152T268
M153T268
M154T7268
M193T269
M209T269
M216T269
M2217269
M226T269
M232T269
M234T269
M2377268
M238T269
M250T269
M254T269
M263T269
M264T268
M265T268
M269T269
M270T269
M2717269
M278T268
M282T268
M284T268
M285T268
M286T268
M291T269
M292T269
M306T268
M307T7268

mzmed

102.0904
162.1113
163.1144
164.1164
184.0921
110.034
128.0443
134.045
135.0293
136.0327
137.045
138.0476
139.0492
152.0556
153.0577
154.0207
193.0012
208.9737
216.0172
220.9965
225.9767
231.9895
233.9895
236.968
237.9856
249.9765
253.9708
262.9841
263.9885
264.9871
269.0862
270.0889
271.0907
2779943
281.9657
284.097
285.0995
286.1014
291.0675
292.0706
306.0781
307.0412

rtmed

60.158
60.357
60.357
60.354
60.167
268.3875
268.118
268.0125
268.011
268.0125
268.5305
268.5305
268.516
267.954
267.954
268.437
268.638
268.5245
268.6355
268.5705
268.504
268.633
268.65
268.49
268.5705
268.634
268.6245
268.5705
268.438
268.408
268.504
268.5705
268.545
268.011
268.497
267.963
267.954
268.011
268.662
268.665
267.937
268.497

Adduct

(M+H)+ 161.104076
M+1161.104076
M+2 161.104076
(M+Na)+ 161.104076

(M+H)+[-H20] 151.048623
[M+H-NH3]+ 151.048623
M+1151.048623

(M+H)+ 151.048623
M+1151.048623

(M+H)+ 268.078924; (M+H)+[-H20] 286.090024
M+1268.078924; M+1 286.090024
M+2 268.078924; M+2 286.090024

(M+H)+ 283.089759

M+1283.089759

M+2 283.089759

(M+Na)+ 268.078924; (M+Na)+[-H20] 286.090024
M+1268.078924; M+1 286.090024

(M+Na)+ 283.089759

(M+K)+ 268.078924,; (M+K)+[-H20] 286.090024

AnniD

— e - -

2; 4
2;4
2; 4

n
"
n
2; 4
2; 4
"
2;4

AlignID

144
144
144
144
144
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413

Isotope

yes
yes

yes

yes

yes
yes

yes
yes

yes

toMSMS

yes

yes
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Annotation in practice

- Annotation in GC/MS

Relative Intensity
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o 1)
£ £
C 2 e R® 4
o o
g g
© ©
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P v - g o |
5 5
5 S
—_ 7o) 0
@ s 7l -qu s
© ©
| I | | | |
5.66 5.68 5.7 5.72 5.74 714 716 718
Retention Time (min) Retention Time (min)
Nicotinic Acid (1TMS) Methionine (2TMS) Aspartic Acid (3TMS)
Match score: 97.8% Match score: 96.1% Match score: 98.4%
[ 78 S = 128 o e 232
180 ® Emp A ® Emp i ® Emp
106 436 ® Ref ® Ref ® Ref
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. o | 10 o 7
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~4 ) : O-—AML% e #}11; } 2 |ﬁ,, ]AL, bape
| | ° ' S AR AS
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| 0 - 1) o | o
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Picture from Domingo-Almenara et al., Anal. Chem., 88 (2016)
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Thank you for your attention!

Questions?
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Pathway Analysis Prerequisites

Feature detection
Retention time alignment
Statistical analysis



Pathway Analysis Prerequisites

Feature detection
Retention time alignment
Statistical analysis

h MZmine




fold
271.094972
59.6958696
20.7924201
16.5527842
20.2312615
26.6099804
5.66123563
30.1386729
24.7943117
2.44206375
158.373415
335.205024
22.5169447
18.6838461

A AR~ A~~~

35.1611492
348.642181
34.8260631
2.81883619
391.572992

log2fold

tstat

pvalue

gvalue

updown

8.08265455 169.812117 6.6221E-08 0.00054666 UP
5.89955921 45.1775663 4.8957E-06 0.00721752 UP

Feature detection

4

ANS S S

“4.0013057O

1.28810086
7.30718637
8.38889996
4.49293918
4.22371956

- AAmIAANna

5.13591032
8.44560332
5.12209549
-1.4950996
8.61313745

- Retention time alignment

Statistical analysis

“04./11£00

17.5080138

76.41158
64.9274058
30.2821087
16569615

s

23.5738056
38.8693701
24.3373088
-13.764555
35.6765283

0.1vo4C-VO

0.00010347
0.00012401
0.00018207
0.00021427
0.00023106
0.00024929
0.00024929
0.00030816
0.00031404

0.0003933
0.00052482
0.00062048
0.00062429
0.00063927
0.00071137
0.00075704
0.00078474

U.UL0O0D5007

0.03502456

0.03791842
0.0443508

0.04713741

0.04838631

0.01QR12N2

0.0

0.0

0.0

0.0

0.0

0.0

0.06877211

0.06922533

0.07120843

0.07231659
0.0729406

UUVVIN
upP
up
up
upP
up

11D

mzmed
544.456801
559.43644
493.350039
495.356237
494,353508
510.3276
573.491742
511.32522
465.318744
629.474016
531.404284
500.306416
572.487987

490.400591
CEQ A2RATT

488.394625
593.417786

550.41601
329.316413
768.571762

Pathway Analysis Prerequisites



fold

271.094972
59.6958696
20.7924201
16.5527842
20.2312615
26.6099804
5.66123563
30.1386729
247943117
2.44206375
158.373415
335.205024
22.5169447
18.6838461
63.9046097
24.1278502

358.44269
1785.67658
36.9654994
4.91567968
201.583154
35.1611492
348.642181
34.8260631
2.81883619
391.572992

log2fold
8.08265455
5.89955921
4.37798578
4.04900199
4.33851437
4.73389554
2.50111697
4.91354399
-4.6319373
1.28810086
7.30718637
8.38889996
4.49293918
4.22371956
5.9978481
4.59262747
8.48559866
10.8022551
5.2081075
2.29739091
7.65523127
5.13591032
8.44560332
5.12209549
-1.4950996
8.61313745

tstat
169.812117
45.1775663
33.1607101
33.3355079
29.9435847
25.473017
24.96156
22.2731985
-34.711263
17.5080138
76.41158
64.9274058
30.2821087
15.6569615
26.040552
23.8607807
54.7628601
56.4160415
24.0682962
22.1105575
40.0821644
23.5738056
38.8693701
24.3373088
-13.764555
35.6765283

pvalue
6.6221E-08
4.8957E-06
5.2453E-06
5.4782E-06
7.4163E-06
2.6633E-05
2.6763E-05
3.8769E-05
6.1082E-05
0.00010347
0.00012401
0.00018207
0.00021427
0.00023106
0.00024929
0.00024929
0.00030816
0.00031404
0.0003933
0.00052482
0.00062048
0.00062429
0.00063927
0.00071137
0.00075704
0.00078474

gvalue

0.00054666
0.00721752
0.00729893
0.00734826
0.00765272
0.01738435
0.01742602
0.02053971
0.02653869
0.03502456
0.03791842

0.0443508
0.04713741
0.04838631
0.04961304
0.04961313
0.05364511
0.05401676
0.05907364
0.06531191
0.06865423
0.06877211
0.06922533
0.07120843
0.07231659

0.0729406

updown
UP

UP

UP

UP

UP

uP

uP

UP
DOWN
UP

UP

UP

UP

UP

UP

uP

uP

UP

upP

UP

UP

UP

UP

UP
DOWN

mzmed
544.456801
559.43644
493.350039
495.356237
494,353508
510.3276
573.491742
511.32522
465.318744
629.474016
531.404284
500.306416
572.487987
490.400591
558.436677
516.425919
658.524971
726.022636
566.389999
626.534683
578.447293
488.394625
593.417786
550.41601
329.316413
768.571762

Pathway Analysis Prerequisites



fold

271.094972
59.6958696
20.7924201
16.5527842
20.2312615
26.6099804
5.66123563
30.1386729
247943117
2.44206375
158.373415
335.205024
22.5169447
18.6838461
63.9046097
24.1278502

358.44269
1785.67658
36.9654994
4.91567968
201.583154
35.1611492
348.642181
34.8260631
2.81883619
391.572992

log2fold
8.08265455
5.89955921
4,37798578
4.04900199
4.33851437
4.73389554
2.50111697
4.91354399
-4.6319373
1.28810086
7.30718637
8.38889996
4,49293918
4,22371956
5.9978481
4,59262747
8.48559866
10.8022551
5.2081075
2.29739091
7.65523127
5.13591032
8.44560332
5.12209549
-1.4950996
8.61313745

tstat
169.812117
45.1775663
33.1607101
33.3355079
29.9435847
25.473017
24.96156
22.2731985
-34.711263
17.5080138
76.41158
64.9274058
30.2821087
15.6569615
26.040552
23.8607807
54.7628601
56.4160415
24.0682962
22.1105575
40.0821644
23.5738056
38.8693701
24.3373088
-13.764555
35.6765283

pvalue
6.6221E-08
4.8957E-06
5.2453E-06
5.4782E-06
7.4163E-06
2.6633E-05
2.6763E-05
3.8769E-05
6.1082E-05
0.00010347
0.00012401
0.00018207
0.00021427
0.00023106
0.00024929
0.00024929
0.00030816
0.00031404
0.0003933
0.00052482
0.00062048
0.00062429
0.00063927
0.00071137
0.00075704
0.00078474

gvalue
0.00054666
0.00721752
0.00729893
0.00734826
0.00765272
0.01738435
0.01742602
0.02053971
0.02653869
0.03502456
0.03791842
0.0443508
0.04713741
0.04838631
0.04961304
0.04961313
0.05364511
0.05401676
0.05907364
0.06531191
0.06865423
0.06877211
0.06922533
0.07120843
0.07231659
0.0729406

updown

DOWN

Pathway Analysis Prerequisites

mzmed
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495.356237
494,353508
510.3276
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629.474016
531.404284
500.306416
572.487987
490.400591
558.436677
516.425919
658.524971
726.022636
566.389999
626.534683
578.447293
488.394625
593.417786
550.41601
329.316413
768.571762




Pathway Analysis Prerequisites

fold

271.094972
59.6958696
20.7924201
16.5527842
20.2312615
26.6099804
5.66123563
30.1386729
247943117
2.44206375
158.373415
335.205024
22.5169447
18.6838461
63.9046097
24.1278502

358.44269
1785.67658
36.9654994
4.91567968
201.583154
35.1611492
348.642181
34.8260631
2.81883619
391.572992

log2fold
8.08265455
5.89955921
4,37798578
4.04900199
4.33851437
4.73389554
2.50111697
4.91354399
-4.6319373
1.28810086
7.30718637
8.38889996
4,49293918
4,22371956
5.9978481
4,59262747
8.48559866
10.8022551
5.2081075
2.29739091
7.65523127
5.13591032
8.44560332
5.12209549
-1.4950996
8.61313745
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169.81211

pvalue
6.6221E-08
4.8957E-06
5.2453E-06
5.4782E-06
7.4163E-06
2.6633E-05
2.6763E-05
3.8769E-05
6.1082E-05
0.00010347
0.00012401
0.00018207
0.00021427
0.00023106
0.00024929
0.00024929
0.00030816
0.00031404
0.0003933
0.00052482
0.00062048
0.00062429
0.00063927
0.00071137
0.00075704
0.00078474

17.508013§

76.41159
64.9274058
30.282108
15.6569615

40.0821644
23.573805€
38.869370
24.3373089
-13.764555
35.676528

nvalue
0.00054666
0.00721752
0.00729893
0.00734826
0.00765272
0.01738435
0.01742602
0.02053971
0.02653869
0.03502456
0.03791842
0.0443508
0.04713741
0.04838631
0.04961304
0.04961313
0.05364511
0.05401676
0.05907364
0.06531191
0.06865423
0.06877211
0.06922533
0.07120843
0.07231659
0.0729406

updown

DOWN

mzmed
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559.43644
493.350039
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572.487987
490.400591
558.436677
516.425919
658.524971
726.022636
566.389999
626.534683
578.447293
488.394625
593.417786
550.41601
329.316413
768.571762




Pathway Analysis Prerequisites

fold og2fold tstat pvalue gvalue updown mzmed
271.094972§8.08265455 169.812114 6.6221E-08 §0.00054666 UP 544.456801
59.6958696 §5.89955921 45.1775663 4.8957E-06§0.00721752 UP 559.43644
20.7924201§4.37798578 33.160710W 5.2453E-06§0.00729893 UP 493.350039
16.552784284.04900199 33.3355079 5.4782E-06§0.00734826 UP 495.356237
20.2312615§4.33851437 29.94358448 7.4163E-06§0.00765272 UP 494.353508
26.6099804 §4.73389554 25.473014 2.6633E-05§80.01738435 UP 510.3276
5.66123563§2.50111697 24961568 2.6763E-0580.01742602 UP 573.491742
30.13867294.91354399 22.273198% 3.8769E-05§0.02053971 UP 511.32522
24.7943117§ -4.6319373 -34.711263 6.1082E-05§0.02653869 DOWN 465.318744
2.442063750§1.28810086 17.508013& 0.00010347§0.03502456 UP 629.474016
158.37341587.30718637 76.41158 0.0001240180.03791842 UP 531.404284
335.205024 88.38889996 64.9274058 0.00018207§ 0.0443508 UP 500.306416
22.5169447§4.49293918 30.282108°4 0.00021427 §0.04713741 UP 572.487987
18.683846184.22371956 15.656961% 0.00023106 §0.04838631 UP 490.400591
63.9046097f 5.9978481 26.040552 0.00024929§80.04961304 UP 558.436677
24.1278502§84.59262747 23.8607807 0.0002492980.04961313 UP 516.425919
358.44269[8.48559866 54.762860W 0.0003081680.05364511 UP 658.524971
1785.67658§10.8022551 56.4160419 0.00031404 §0.05401676 UP 726.022636
36.9654994 8 5.2081075 24.0682962y 0.0003933§0.05907364 UP 566.389999
4.91567968 §2.29739091 22.1105573 0.00052482§0.06531191 UP 626.534683
201.58315487.65523127 40.0821644% 0.00062048 §0.06865423 UP 578.447293
35.161149285.13591032 23.5738056% 0.0006242980.06877211 UP 488.394625
348.642181[8.44560332 38.8693701W 0.00063927 §0.06922533 UP 593.417786
34.826063185.12209549 24.3373088 0.00071137§80.07120843 UP 550.41601
2.81883619f -1.4950996 -13.764553 0.0007570480.07231659 DOWN 329.316413
391.572992§8.61313745 35.6765283 0.000784748 0.0729406 UP 768.571762
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Biomarkers vs. Biological Relevance

Healthy vs. Disease

—->CVD
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PSA
—>Colon cancer

“A measurable substance in an
organism whose presence is indicative
of some phenomenon such as
disease, infection, or environmental
exposure.”

S1P
> Sepsis
—>Alzheimer’s
—->Cancer...
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Biomarkers vs. Biological Relevance

NH, o
L-Kynurenine % .I
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Pre-treatment Drug

Gendelman et al NPJ Parkinson’s Disease Journal 2017



Biomarkers vs. Biological Relevance

L-Kynurenine

Serotonin

Quinolinic acid

NH,
o
OH

Pre-treatment Drug

H
N
| .
HO NH. ”

Pre-treatment Drug

N OH
o ]
N N . .

o Pre-treatment Drug

\

Gendelman et al NPJ Parkinson’s Disease Journal 2017
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2. MS/MS matched with database spectra
3. MS/MS and RT matched with standard



Pathway Tools for Annotated Data

o

Hrhdb

The Human Metabolome Database

XCMS—->~1,000,000 molecules ~115,000 molecules
https://metlin.scripps.edu http://www.hmdb.ca/

~40,000 lipids KEGG, EcoCyc, YMDB, SEED
http://www.lipidmaps.org/tools/ http://minedatabase.mcs.anl.gov/



Pathway Tools for Annotated Data

Workflow4dmetabolomics --Galaxy
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raw data ﬂﬁ-gﬁlﬁll’iﬁ
$ ==
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4

'Wm

Batch correction Filter Formula HR2

group

L
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O
oy)

Univariate
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; ’ — X
" TP2 - Statistics MassBank
L ___ preprocessed data‘ ||__ TP3 - Annotation T

I

1

I

1

1

1

1

1

il retcor
! y

1

1

I

: filPeaks
1

1

1

diffreport

http://workflowdmetabolomics.org/



Pathway Tools for Annotated Data

Compound KEGG ID
Sulfite C00094
Homocystine C01817
Sulfuric acid C00059
Chlorpromazine C06906
2-Mercaptoethanesulfonic acid C03576
acetyl-L-cysteine C06809
acetyl-L-cysteine C06809
3-Methylthiopropionic acid C08276
cysteine C00736
Lithocholic acid taurine conjugate C02592
6-Thioguanosine monophosphate C16619
Ethionamide C07665
Acetylsulfamethoxazole C13061
Famotidine C06994
Busulfan C06862
L-Methionine C00073
5'-Deoxy-5'-(methylthio)adenosine C00170
5'-Deoxy-5'-(methylthio)adenosine C00170
5'-Adenylyl sulfate (APS) C00224
DL-Dithiothreitol C00265
docusate C07874
Acetyl-CoA C00024




Pathway Tools for Annotated Data

Glycan Biosynthesis
nn!i uoﬂno«-m

Compound KEGG ID Ra%
Sulfite C00094 i
Homocystine C01817 RS 5 o
Sulfuric acid C00059 - o I i
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3-MthyIthiopropionic acid C08276 : : : A
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Pathway Tools for Annotated Data
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I\KIII;GG'% BE) 4694 Bacteria
PP 269 Archea

Kanehisa et al, Nucleic Acids Research, 2011



Pathway Tools for Annotated Data

442 Eukaryotes
I\KIII;GG'% BE) 4694 Bacteria
PP 269 Archea

iR

interactive Pathways Explorer

Kanehisa et al, Nucleic Acids Research, 2011
Yamada et al, Nucleic Acids Research, 2011
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442 Eukaryotes
ey oC m) 4694 Bacteria
apper
PH 269 Archea

NRZANREINN \\BR{OLE

interactive Pathways Explorer

Kanehisa et al, Nucleic Acids Research, 2011
Yamada et al, Nucleic Acids Research, 2011
Lépez-lbanez et al, Nucleic Acids Research, 2016



Pathway Tools for Annotated Data

442 Eukaryotes
KEGG - 4694 Bacteria
269 Archea

Mapper

iR

interactive Pathways Explorer

Kanehisa et al, Nucleic Acids Research, 2011
Yamada et al, Nucleic Acids Research, 2011
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Genesand Genomes

Mapper

K[ Kyoto Encyclopedla of K E G G

Search against: Enter: map, ko, ec, rn, hsadd, or org

Primary ID: KEGG identifiers § (Outside IDs for organism-specific pathways only)

Enter objects one per line followed by bgcolor, fgcolor:
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Genesand Genomes

K[ Kyoto Encyclopedla of K E G G

Mapper

Select Organism

Search against: Enter: map, ko, ec, rn, hsadd, or org

Primary ID:  KEGG identifiers § (Outside IDs for organism-specific pathways only)

Enter objects one per line followed by bgcolor, fgcolor:

C06809 red

C06809 red

C06862 green

C06906 red

C06994 green

C07665 red

C07874 green

C08276 red

C13061 red

C16619 red Y
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Annotated Data

KEGG ID
C00094
C01817
C00059
C06906
C03576
C06809
C06809
C08276
C00736
C02592
C16619
C07665
C13061
C06994
C06862
C00073
C00170
C00170
C00224
C00265
C07874
C00024
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Mapper

Select Organism

Search against: Enter: map, ko, ec, rn, hsadd, or org

Primary ID:  KEGG identifiers § (Outside IDs for organism-specific pathways only)

Enter objects one per line followed by bgcolor, fgcolor:

Compound
IDs
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C06809
C06809
C06862
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C07665
C07874
C08276
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Annotated Data

KEGG ID

C00094

Cc01817

C00059

C06906

C03576

C06809
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C00736 Primary ID: | KEGG identifiers §

C02592

C16619

gg;ggi C06809  red
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€06994 Compound C06862 green/UP

(06862 C06906 red

C00073 IDs C06994  green

LU ﬁ C07665  red

C00170 C07874 green

€00224 C08276 red <«

C00265 C13061 red

07874 C16619 red

C00024

Kyoto Encyclopedla of
Genes and Genomes

KEGG
Mapper

Select Organism

Search against: Enter: map, ko, ec, rn, hsadd, or org

(Outside IDs for organism-specific pathways only)

Enter objects one per line followed by bgcolor, fgcolor:
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Kyoto Encyclopedia of K E G G
K Genes and Genomes

Pathway Search Result

Following object(s) was/were not found cpd:C00265 cpd:C00736 cpd:C02592 cpd:C06809 cpd:C06862 cpd:C06906 cpd:CO

Sort by the pathway list
Show all objects
e dvu01100 Metabolic pathways - Desulfovibrio vulgaris Hildenborough (7)
e dvu00270 Cysteine and methionine metabolism - Desulfovibrio vulgaris Hildenborough (6)
e dvu01120 Microbial metabolism in diverse environments - Desulfovibrio vulgaris Hildenborough (5)
e dvu00920 Sulfur metabolism - Desulfovibrio vulgaris Hildenborough (4)
e dvu01130 Biosynthesis of antibiotics - Desulfovibrio vulgaris Hildenborough (3)
e dvu01200 Carbon metabolism - Desulfovibrio vulgaris Hildenborough (2)
e dvu00430 Taurine and hypotaurine metabolism - Desulfovibrio vulgaris Hildenborough (2)
e dvu00680 Methane metabolism - Desulfovibrio vulgaris Hildenborough (2)
e dvu00261 Monobactam biosynthesis - Desulfovibrio vulgaris Hildenborough (2)
e dvu0l1110 Biosynthesis of secondary metabolites - Desulfovibrio vulgaris Hildenborough (2)

e dvu00230 Purine metabolism - Desulfovibrio vulgaris Hildenborough (2)
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K ' KEGG
Mapper

pathway Search Result Number of overlapping metabolites

Following object(s) was/were not found cpd:C00265 cpd:C00736 cpd:C02592 cpd:C06809 cpd:C&SGZ ¢cpd:C06906 cpd:CO

Sort by the pathway list
Show all objects
e dvu01100 Metabolic pathways - Desulfovibrio vulgaris Hildenborough (7)
e dvu00270 Cysteine and methionine metabolism - Desulfovibrio vulgaris Hildenborough @
e dvu01120 Microbial metabolism in diverse environments - Desulfovibrio vulgaris Hildenborough (5)
e dvu00920 Sulfur metabolism - Desulfovibrio vulgaris Hildenborough (4)
e dvu01130 Biosynthesis of antibiotics - Desulfovibrio vulgaris Hildenborough (3)
e dvu01200 Carbon metabolism - Desulfovibrio vulgaris Hildenborough (2)
e dvu00430 Taurine and hypotaurine metabolism - Desulfovibrio vulgaris Hildenborough (2)
e dvu00680 Methane metabolism - Desulfovibrio vulgaris Hildenborough (2)
e dvu00261 Monobactam biosynthesis - Desulfovibrio vulgaris Hildenborough (2)
e dvu0l1110 Biosynthesis of secondary metabolites - Desulfovibrio vulgaris Hildenborough (2)

e dvu00230 Purine metabolism - Desulfovibrio vulgaris Hildenborough (2)
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Kyoto Encyclopedia of K E G G
K Genes and Genomes

pathway Search Result Number of overlapping metabolites

Following object(s) was/were not found cpd:C00265 cpd:C00736 cpd:C02592 cpd:C06809 cpd:C&SGZ ¢cpd:C06906 cpd:CO

Sort by the pathway list
Show all objects

e dvu01100 Metabolic pathways - Desulfovibrio vulgaris Hildenborough (7)
ﬂ e dvu00270 Cysteine and methionine metabolism - Desulfovibrio vulgaris Hildenborough @
e dvu01120 Microbial metabolism in diverse environments - Desulfovibrio vulgaris Hildenborough (5)
e dvu00920 Sulfur metabolism - Desulfovibrio vulgaris Hildenborough (4)
e dvu01130 Biosynthesis of antibiotics - Desulfovibrio vulgaris Hildenborough (3)
e dvu01200 Carbon metabolism - Desulfovibrio vulgaris Hildenborough (2)
e dvu00430 Taurine and hypotaurine metabolism - Desulfovibrio vulgaris Hildenborough (2)
e dvu00680 Methane metabolism - Desulfovibrio vulgaris Hildenborough (2)
e dvu00261 Monobactam biosynthesis - Desulfovibrio vulgaris Hildenborough (2)
e dvu0l1110 Biosynthesis of secondary metabolites - Desulfovibrio vulgaris Hildenborough (2)

e dvu00230 Purine metabolism - Desulfovibrio vulgaris Hildenborough (2)
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e dvu00270 Cysteine and methionine metabolism - Desulfovibrio vulgaris Hildenborough (6)
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e dvu00270 Cysteine and methionine metabolism - Desulfovibrio vulgaris Hildenborough (6)
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€00224
C00265
C07874
€00024
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KEGG ID
C00094
C01817
C00059
e 2 otion C06906
C03576
C06809
C06809
C08276
C00736
C02592
C16619
C07665
C13061
C06994
C06862
C00073
C00170
C00170
C00224
C00265
C07874
C00024

Statistics
K .

Xia and Wishart, Nucleic Acids Research, 2010
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KEGG ID
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C06862
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C00170
C00170
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C00265
C07874
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Statistics
K ~N

KEGG ID

Input Type: | Compound names v

Xia and Wishart, Nucleic Acids Research, 2010
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Metabolite Functional Enrichment

" Statistics
Y
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Methionine Metabolism
©® Retinol Metabolism
Betaine Metabolism

y Acids
@ Beta Oxidation of Very Long Chain Fatty Acids

Chain Saturated Fatty Acids
Spermidine and Spermine Biosynthesis

® Androgen and Estrogen Metabolism
© Fatty Acid Biosynthesis

Xia and Wishart, Nucleic Acids Research, 2010
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Metabolic Pathways

-log(p)
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Pathway Impact

Xia and Wishart, Bioinformatics, 2010
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Feature Mapping
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Feature Mapping

Automated Workflows using Mummichog:



Feature Mapping

Automated Workflows using Mummichog:

S. Lietal, PLoS Comput. Biol., 2013
Shuzao Li
Emory University
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Li et al, PLoS Computational Biology, 2013
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Li et al, PLoS Computational Biology, 2013
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Li et al, PLoS Computational Biology, 2013
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384.9432
338.2470
507.1602
268.1587
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m/z

1500

1000

500

-500

-1000

-1500

2.5

Fisher’s Exact Test

7.5

10

Mummichog

12.5 15

Retention Time (minutes)

® Upregulated

® Downregulated

17.5

20

22.5

25

g~y A ™ N

Significant  Reference
439.0639 387.2271
207.0759 152.0722
583.2114 699.2394
616.1190 543.3510
182.0833 338.2470
300.0444 240.9840
314.0600 158.1189
260.5147 357.3067
495.2696 563.3888
152.0722 182.0833
518.1004 240.1712
437.0628 203.0691
140.0100 261.6342
615.1152 253.0341
139.0398 283.0455
184.0011 572.2922
384.9432 207.0759
338.2470 484.1861
507.1602 138.0226

Y ala el e e )




Mummichog

FET:
Statistical significance of matched significant list vs. nonsignificant list
compared with a random permutation of the signifcant list vs. nonsignificant list



Mummichog

FET:
Statistical significance of matched significant list vs. nonsignificant list

compared with a random permutation of the signifcant list vs. nonsignificant list

Overlapping
Pathway putative
metabolites’

All

. -values “
metabolites?* P

pyrimidine
deoxyribonucle
otides de novo
biosynthesis |

12 15 5.4e-3

glycolysis |
(from glucose 11 14 7.8e-3
6-phosphate)

glycolysis Il
(from fructose 11 14 7.8e-3
6-phosphate)

purine
deoxyribonucle
osides
degradation |

8 1.0e-2

UDP-N-acetyl-
D-glucosamine 8 10 1.5e-2 Online
biosvnthesis |




Mummichog

FET:
Statistical significance of matched significant list vs. nonsignificant list
compared with a random permutation of the signifcant list vs. nonsignificant list

Significant

439.0639
207.0759
583.2114
616.1190

182.0833 ‘ .
300.0444
314.0600
260.5147
495.2696 y
152.0722

518.1004
437.0628




Feature Mapping

Automated Workflows using Mummichog:

Statistics
K oy

Inve -, ation

Online

Raw MS data Processed data

Huan et al Nature Methods, 2017
Forsberg et al Nature Protocol 2018 Chong et al Nucleic Acids Research 2017



User uploads raw MS data

I

Mummichog
2 ? {G 3 K[én‘eg Eitulthe

PROTEIN DATA BANK

7600 Biosources — model organisms

Li et al, PLoS Computational Biology, 2013



TIC

1e+07 2e+07 3e+07 4e+07

0e+00

Total lon Chromatograms (corrected)

5 10 15 20

Retention Time (minutes)

Online



Total lon Chromatograms (corrected)

Online

3e+07 4e+07
] 1

TIC
2e+07
1

1e+07
1

0e+00

0 5 10 15

Retention Time (minut

Huan et al Nature Methods, 2017
Forsberg et al Nature Protocol 2018

0%

D

purine deoxyril;onucleosldes degradation |

gl A
/ salvége pathways of midine ribonucleotides
glu’coneogenesis 1 \
ey
D _ | )
/ ,‘L'u:i; 1 (from gl e 6-ph
_mixed acid fermentation
/ L-lysine blosynth/e%is 1
L-isoleucine biosynthesis | (from thr
.\\b /;/‘:
10% 20% 30% 40% 50% 60% 70% 80% 90%

Average Overlap (metabolites) Percentage

[ |
uracil ‘degrl'ada\tl'on m
N 4

D-serinei!egraaalion

glycerol ﬂeagadation v



Total lon Chromatograms (corrected)

Online

3e+07 4e+07
] 1

TIC
2e+07
1

1e+07
1

T T T T
0 5 10 15

0e+00

Retention Time (minut

Huan et al Nature Methods, 2017
Forsberg et al Nature Protocol 2018

-Log (p-value)

0%

L-isoleucine

prﬁmidine ribonucleotides
A

< 7"’»-.\ % '
/glycqusisl(fr i £ phosphate)

~mixed acid fermﬁn(élio}\r\'?/ :
/ L-lysine blt:)syr)lhg‘sis 1

i h

is | (from thr

4

20% 30% 40% 50% 60% 70% 80%
Average Overlap (metabolites) Percentage

‘\\0 purine deoxyrib‘onucleoslt‘!es degradation |

(T
uraci‘l_ degradation 1l

D-seri_ne degraaation

glycerol 5egradation v
-

90%



Online

Total lon Chromatograms (corrected)

I~

i ‘

[

-

I~

?

(4]

L]

M~

e %

[V}

S 3

> | s

= L
=
g
1

o

E I I | I

o

10

Retention Time (minut

Huan et al Nature Methods, 2017
Forsberg et al Nature Protocol 2018

15

1 Jmixe“d acid fer_men(h‘lio\r;_

- "‘--\ ) s
/glyco‘lysis 1(fro Mt 6-phosphate)

§ ac 5 <=
/ L-I)‘/;‘lne biosynthesis |

L-isoleucine biosynthesis | (from thr

>

0% 10% 20% 30% 40% 50% 60% 70%

Average Overlap (metabolites) Percentage

(-
uraci‘l degrada\tlon m
N 4

D-seri_ne degra;!ation

-/

glycerol degradation v
3

80% 90%

Pathway Name Overlapping Genes Overlapping Proteins | Overlapping Metabolites * | p-value
gluconeogenesis 1 10 8 3 0.042
glycolysis I (from glucose 6-phosphate) |12 7 2 0.075
glycolysis II (from fructose 6-phosphate) | 11 6 2 0.075




Metabolite Overlap with Pathway: gluconeogenesis |

Search:

Metabolites |= METLIN ID KEGG ID Dysregulation Fold Change p-value m/z Retention Time Adduct Form Feature Details

(S)-malate

118 C00149 "DOWN" 27 1.1e-6 115.0037  33.69 M-H20-H[-] 352

118 C00149 "DOWN" 37 6.4e-7 133.0143 33.68 M-H[-] 307

118 C00149 "DOWN" 15.8 1.4e-4 168.9911  46.97 M+CI[-]
2-phospho-D-glycerate

151 C00631 "DOWN" 31 1.6e-4 184.9856 42.83 M-H[-] 1209

151 C00631 "DOWN" 25 6.7e-5 1849855 43.49 M-H[-]
3-phospho-D-glycerate

150 C00197 "DOWN" 31 1.6e-4 184.9856 42.83 M-H[-] 1209

150 C00197 "DOWN" 25 6.7e-5 184.9855 43.49 M-H[-]
D-glyceraldehyde 3-phosphate

3294 C00118 "DOWN" 15.8 1.4e-4 168.9911  46.97 M-H[-]
fructose 1,6-bisphosphate

147 C00354 "DOWN" 313 9.8e-5 338.9892 47.04 M-H[-]

147 C00354 "DOWN" 15.8 1.4e-4 168.9911  46.97 M-2H[2-]
glycerone phosphate

148 C00111 "DOWN" 15.8 1.4e-4 168.9911  46.97 M-H[-]



Metabolite Overlap with Pathway: gluconeogenesis |

Search:

Metabolites |= METLIN ID KEGG ID Dysregulation Fold Change p-value m/z Retention Time Adduct Form Feature Details

(S)-malate

118 C00149 "DOWN" 27 1.1e-6 115.003 33.69 M-H20-H[-] 352

118 C00149 "DOWN" 37 6.4e-7 133.014f 33.68 M-H[-] 307

118 C00149 "DOWN" 15.8 14e-4 168.991 46.97 M+CI[-]
2-phospho-D-glycerate

151 C00631 "DOWN" 31 1.6e-4 1849858 42.83 M-H[-]

151 C00631 "DOWN" 25 6.7e-5 1849858 43.49 M-H[-]
3-phospho-D-glycerate

150 C00197 "DOWN" 31 1.6e-4 1849858 42.83 M-H[-]

150 C00197 "DOWN" 25 6.7e-5 1849858 43.49 M-H[-]
D-glyceraldehyde 3-phosphate

3294 C00118 "DOWN" 15.8 1.4e-4 168.991 46.97 M-H[-]
fructose 1,6-bisphosphate

147 C00354 "DOWN" 313 9.8e-5 338.989) 47.04 M-H[-]

147 C00354 "DOWN" 15.8 1.4e-4 168.991 46.97 M-2H[2-]
glycerone phosphate

148 C00111 "DOWN" 15.8 1.4e-4 168.991 46.97 M-H[-]




Feature Mapping

Chong et al Nucleic Acids Research 2018



Feature Mapping

21 Model Systems:
Mammals
Plant

Chong et al Nucleic Acids Research 2018



Feature Mapping

Visiia - 1uon | Irve -. ation

4.0 21 Model Systems:
Mammals

@ Plant

Upload a peak list profile (?]

Mass Accuracy (ppm): 0.1 v (editable)@
Analytical Mode: e Positive Mode Negative Mode
P-value Cutoff: 1.0E-4 ¥ (editable)
Choose Data File: Choose File ' export.txt

Chong et al Nucleic Acids Research 2018



~_ Statistics
N

e 2 ation

m.z
135.029882
145.0504748
526.2424105
135.0314479
135.03129
210.0384291
606.074636
89.02423101
88.04032549
105.0192214
170.0459139
165.0401703
191.0560661
08.02469887
966.2797467
243.0986141
245.114304
160.0613397
187.0012806
147.0297863
128.0330011
155.0089072

p.value t.score

1.133E-11
1.59743E-11
7.55667E-11
1.33987E-10
1.89734E-10
4.33849E-10
9.31523E-10
1.18565E-09
1.57119E-09
2.11853E-09
3.1135E-09
4.61572E-09
4.66254E-09
6.56477E-09
7.35356E-09
7.39342E-09
9.86668E-09
1.62841E-08
1.95217E-08
2.00281E-08
2.06351E-08
2.1046E-08

Feature Mapping

21 Model Systems:
Mammals
Plant

24.02133688
-16.75295439
-23.752828
41.06575322
39.10495648
-34.49820828
-21.90779617
-31.22736519
-27.93033212
-14.67692019
-27.69435678
21.37085582
-25.21491821
-25.06503599
-20.12428665
-24.55919426
23.57684187
22.46107258
-21.83924786
-15.53239635
-10.39857714
16.17600945

Chong et al Nucleic Acids Research 2018



(o Feature Mapping

'

Inve ;. ation

21 Model Systems:
“ Mammals
Plant

Pathway Name Total < Hits (all) < Hits (sig.) < Fisher's P < EASE Score © GammaP <
Glyoxylate and dicarboxylate metabolism 29 14 12 0.11534 0.27603 0.0016258
Citrate cycle (TCA cycle) 20 10 9 0.11283 0.31351 0.0019478
Alanine, aspartate and glutamate metabolism 18 9 8 0.15414 0.39319 0.0028784
Galactose metabolism 37 15 12 0.22778 0.42515 0.003376
Inositol phosphate metabolism 8 4 4 0.2077 0.60543 0.0086507
Arginine and proline metabolism 41 12 9 0.41889 0.65342 0.011297
Butanoate metabolism 18 9 7 0.39928 0.66905 0.012349
Pyruvate metabolism 26 6 5 0.36886 0.69539 0.014386
Glycolysis or Gluconeogenesis 29 14 10 0.5057 0.71303 0.015969
Glutathione metabolism 21 3 3 0.3082 0.75083 0.020105
Glycerolipid metabolism 14 3 3 0.3082 0.75083 0.020105

Chong et al Nucleic Acids Research 2018
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__ Statistics

VISHE . i

Function

RE TN

11
Hits

Inve

S

Name Sigs P-value Color
Glyoxylate and dicarboxy! 14 12 0.11534

Citrate cycle (TCA cycle) 10 9 0.11283 [N
Alanine, aspartate and glu 9 8 0.15414 |0
Galactose metabolism 15 15 0.22778
Inositol phosphate metabo 4 4 0.2077
Arginine and proline meta 12 9 0.41889
Butanoate metabolism 9 7 0.39928
Pyruvate metabolism 6 5 0.36886
Glycolysis or Gluconeoge: 14 12 0.5057
Glutathione metabolism 3 3 0.3082

gpalg

- ation

Feature Mapping
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Networking

PlUMet

Online: Uses untargeted data to perform pathway overlap and
gain network information; takes both pos and neg MS data

http://fraenkel-nsf.csbi.mit.edu/

piumet2/
Pirhaji et al, Nature Methods, 2016

Ve
\J?Cyto

Network Visualization and Analysis

Metscape ¢

http://fraenkel-nsf.csbi.mit.edu/
piumet2/
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Metabolite Coverage

Untargeted = Unbiased?
/\/\/\/\/\/\/\/\AOLOH

Hydrophobic
BSOL

)

0o o Hydrophilic  wv~_\,
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Mummichog

0 \ Hydrophobic /
Hydrophilic
O

—




Mummichog

. O

MULTIMODAL
ANALYSIS

BT @
-

Input both +ve and —ve mode data




¢ Pathway Analysis
¢ and Multi-Omic
Integration

. Prerequisites
. Biomarkers vs. Biological Relevance

1
2

3. Pathway Tools for Annotated Data

4. Pathway Tools for Unannotated Data
5. Multi-Omic Integration



Multi-Omic Integration

Metabolome

P 1+ t .G

Genome

Metabolism of
Other Amino Acid



Mummichog

Metabolome

s Proteome

Transcriptome

Clinical data

o N1 -pcetyl.

spermipe

spermidine



Mummichog

Need access to more than just pathways

Kyoto Encyclopedia of
Genesand Genomes

WIKIPATHWAYS
Pathways for the People




Gene
Data

IMPaLA

Integrated Molecular Pathway Level Analysis

MDHC_HUMAN
DLDH_HUMAN
DHSA_HUMAN
DHSB_HUMAN
C560_HUMAN

DHSD_HUMAN
ODO2_HUMAN
ODO1_HUMAN

ACON_HUMAN
IDH3A_HUMAN
IDH3B_HUMAN

MDHM_HUMAN

1.69 2.46

27

CISY_HUMAN -0.44

2.51 C00002
0.251.14 C00011
082 3.20 C00001
064 259 C00004
C00080
-0.75 0.03 C00003
0.05 1.81 C00008
2.79 | C00009
2062  2.80 | C00024
313 C00010
182 203 C00122
137 224 C00026
078  0.64 | C00042

0.253.61

1.39 1.23
-1.14 0.84
0.43 1.05
0.41 3.77
0.94 -0.63
-0.18 0.04
-0.71 1.49
-0.93 1.08
-1.33 0.56
0.651.75
-0.27 3.33
-0.38 0.84

Metabolite
Data

Kamurov et al, Bioinformatics 2011



Gene
Data

pathway name

TCA cycle

TCA cycle
superpathway of
conversion of glucose
to acetyl CoA and
entry into the TCA
cycle

Citric acid cycle (TCA
cycle)

Citrate cycle

TCA Cycle

Pyruvate

dehydrogenase
deficiency (E3)

IMPaLA

Integrated Molecular Pathway Level Analysis

MDHM_HUMAN  -1.16 2.51 C00002 6,253.61

MDHC_HUMAN 0.251.14 C00011 1.391.23

DLDH_HUMAN -0.82 3.20 C00001 -1.14 0.84

DHSA_HUMAN -0.64 2.59 C00004 0.43 1.05 I

DHSB_HUMAN 1.69 2.46 C00080 0.413.77 MetabOIIte

C560_HUMAN -0.75 0.03 C00003 0.94 -0.63

DHSD_HUMAN -0.05 1.81 C00008 -0.13 0.04 Data

ODO2_HUMAN =1.27 2.79 ‘ C00009 -0.71 1.49

ODO1_HUMAN -0.62 2.80 \ C00024 -0.93 1.08

CISY_HUMAN -0.44 Sl 3 C00010 -1.33 0.56

ACON_HUMAN -1.82 2.03 C00122 0.651.75

IDH3A_HUMAN -1.37 2.24 C00026 -0.27 3.33

IDH3B_HUMAN -0/ 8 0.64 7 C00042 -0.38 0.84 Y,

psa ;:::;y ovt;réarl;;;;ing gear:les Pgenes Qgenes :;I:ta,gm:g meta?)lcl)lites F’metabolites Qmetabolites Pjoint Qjoint

HumanCyc 15 18 (18)  3.12e-44 4.71e-41 18 22 (23) 2.36e-45 9.94e-42 1.56-86  3.84e-83
EHMN 17 30 (30) 1.77e-46  4e-43 17 36 (36) 6.04e-36 2.12e-33 2e-79 2.56e-76
HumanCyc 16 47 (48) 1.38e-38 1.25e-35 18 34 (36) 7.09e-40 1.49e-36 1.74e-75 1.48e-72
Reactome 14 22 (22) 3.81e-38  2.87e-35 17 30 (30) 8.44e-38 1.18e-34 5.54e-73 3.54e-70
INOH 16 32 (32) 5.52e-42  6.25e-39 16 35 (35) 4.16e-33 8.34e-31 3.91e-72 2e-69
Wikipathways 13 17 (17) 7.08e-37 4.58e-34 16 23 (24) 2.53e-37 1.53e-34 3.02e-71  1.29e-68
SMPDB 13 21 (21) 6.04e-35 1.44e-32 17 32 (33) 3.98e-37 1.53e-34 3.94e-69 7.75e-67



Statistics
K "~

VISHE ». bl Inve -, ation

Gene List Metabolite List
Gene list with optional fold changes Compound list with optional fold changes

#Entrez logFC #KEGG logFC

1737 -1.277784317 C00116 1.010972619
83440 -1.034136439 C00565 -0.714283001
3939 -2.231729728 C00033 0.822193121
10911 -1.045657875 C00583 -1.005192252
10690 -0.968308832 C00022 -0.623838569
10010 -0.861541301 C00719 -0.406052491
11224 1.187399591 C05984 -0.390152174
63826 -1.405238611 C00207 -0.932835099
11031 0.785011172 C00065 0.903658797
4190 -1.778774832 C00031 0.548035915
10782 -2.140715987 C00079 0.416744818
10993 -0.925083829 C02632 -0.515041676
10455 1.732172706 C00064 -0.497216411
10963 1.177511121 C00114 1.102078837

10282 -1.20754269

tsmnn 4 Amasa= Z

C00073 0.516193785

Ancan A aanc—ad Yz

ID Type: (Human) Entrez ID = ID Type: KEGGID b

Chong et al Nucleic Acids Research 2018



__ Statistics

Visna' ~.1uon Inve

Function

Name Hits

Aminoacyl-tRNA biosynthesi 9

Glycine, serine and threonine 8

Nitrogen metabolism 5
Pyruvate metabolism 6
Methane metabolism 6

Glycolysis or Gluconeogenesi 5
D-Arginine and D-ornithine 0 2
Arginine and proline metaboli 6
Valine, leucine and isoleucine 3

Glyoxylate and dicarboxylate 4

S

o0 e oo o
&

g/.}.

*——o—o

°

!

ation

W}Q“ :

2.37e-9

¢
oooolls [N |

0.00052
0.00132
0.00241
0.00279
0.00371
0.00665

0900000 0o
10

{

L4

0.0000030¢ 3< =

oooco0s32 M

) H*ﬁﬁ_.
%//J/ |

"~ ®Betaine
- S © Choline

%
L-Threth\e </

f— ///T/ : //,

\
%) ® L-Isoleucine S

i @ Methionine _L
J *——e-
I

® L-Arg @ Creatine

HZ; |
oL Glutamlne ! !
|t

Chong et aI Nucleic Acids Research 2018



Online

Data Upload



Online

Data Upload

FileID * Filename Upload Date List Type Accession ID Metabolic Matches Remove
160564  Ecoli_gene 2017-05-29 18:39:00 Gene symbol View x
160565  Ecoli_prot  2017-05-29 18:39:11 v UNIPROT View x

Gene symbol

Run matching subjobs

Huan et al Nature Methods, 2017
Forsberg et al Nature Protocol 2018



Overlap Table

Online

. ! Overlapping
Overlappin Overlappin All
Pathway Pping All genes* .pp 9 All proteins* putative ooy p-values -
genes proteins 1 metabolites
metabolites
Ig'“°°ne°genes's 10 17 8 17 3 6 4.2¢-2
glycolysis | (from
glucose 6- 12 18 7 18 2 IS 7.5e-2
phosphate)
glycolysis Il
(from fructose 6- 11 18 6 18 2 4 7.5e-2
phosphate)
methylglyoxal 3 1 2 2 3 3.2e-2
degradation ||
mixed acld 17 29 1 20 4 10 9.6e-2

fermentation



Multi-Omic Cloud Plot

( |
uracil degradation 11l
Q

D—seri@aation
3

4

purine deoxyriblo cleosides degradation |

g I | ’ d, v
o ti
z . glycero %ﬂ ation
o
S
1
\ @- . ;
dipathways of ine ribonucleotides
fro T .G—phosphate)
1 mixed acid fermentation
L—Iysine biosynthesis |
L-isoleucine biosy hesis | (from tl
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Average Overlap (metabolites) Percentage
Pathway Name Overlapping Genes Overlapping Proteins | Overlapping Metabolites * | p-value

gluconeogenesis 1 10 8 3 0.042

alycolysis I (from glucose 6-phosphate) |12 7 2 0.075

glycolysis II (from fructose 6-phosphate) | 11 6 2 0.075




Advanced
Metabolomics

Thank you!
Questions?

Erica Forsberg, PhD
Dept. Chemistry & Biochemistry
eforsberg@sdsu.edu



Advanced ¢”
Metabolomics "

 Primary Experimental and Informatic Challenges

* Key Algorithms in Creating Reproducible Data
e Computational Metabolite Data Annotation
 Pathway Analysis & Multi-Omic Integration
e Identifying Metabolites from Scratch

June 3@

Y . . . ---- 09:00 am Begin ----
e Statistics in Design & Interpretation ... 15.15am sreak -

---- 12:00 pm Lunch ---
e Activity Metabolomics - 02:15 pm Break -



Identifying Metabolites: The Big Obstacle



Identifying Metabolites: The Big Obstacle
Levels of identification

Schymanski, E. et. al. Environ. Sci. Technol., 2014, 48 (4), 2097-2098
Sumner, L. W. et. al. Metabolomics, 2007, 3: 211



Identifying Metabolites: The Big Obstacle
Levels of identification

Schymanski, E. et. al. Environ. Sci. Technol., 2014, 48 (4), 2097-2098
Sumner, L. W. et. al. Metabolomics, 2007, 3: 211



Identifying Metabolites: The Big Obstacle
Levels of identification

MS, MS?, Exp. data 3

{ Level 4: Unequivocal molecular formula MS isotope/adduct

{ Level 5: Exact mass of interest MS

Schymanski, E. et. al. Environ. Sci. Technol., 2014, 48 (4), 2097-2098
Sumner, L. W. et. al. Metabolomics, 2007, 3: 211



Identifying Metabolites: The Big Obstacle
Levels of identification

Example Identification confidence Minimum data requirements
Level 1: Confirmed structure B B RT Ref d 1
Mow, by reference standard P, Ri, Reference Std.
P G
A “,A Level 2: Probable structure
"e a) by library spectrum match MS, MS?, Library MS? 2
b) by diagnostic evidence MS, MS?, Exp. data
T
1 N o 1
e .
i < aul Level 3: Tentative candidate(s) ,
i KQ A structure, substituent, class MS, MS?, Exp. data 3
(L L -
YT g 3 .
i CgHsN;0, :{ Level 4: Unequivocal molecular formula MS isotope/adduct 4
!'-155.-67-5-51 { Level 5: Exact mass of interest MS

Schymanski, E. et. al. Environ. Sci. Technol., 2014, 48 (4), 2097-2098
Sumner, L. W. et. al. Metabolomics, 2007, 3: 211



Identifying Metabolites: The Big Obstacle

Feature (m/7) Metabolite ID

=Y =




Identifying Metabolites: The Big Obstacle

Feature (m/7) Metabolite ID

=Y =




Identifying Metabolites: The Big Obstacle
Identification prior to MS/MS

Feature (m/z)

Search m/z in DB

Calculate possible
molecular formulas

Putative ID's
r formulas

Reduction of
putative ID’s

e |sotope envelope
e Retention time
e Type of sample |\/|S/|V|S

* |[n-source fragments



Identifying Metabolites: The Big Obstacle
Identification with MS/MS

MS/MS (CID)
Compare MS/MS of putative ID’s in DB

;

MS/MS available in DB?

' N

Yes No



Identifying Metabolites: The Big Obstacle
Identification with MS/MS

MS/MS (CID)
Compare MS/MS of putative ID’s in DB
MS/MS available in DB?
"4 N\
Yes No
"4

Does it match?
4 N\

Yes No



Relative Intensity

Example 1: 9-PAHSA

100

50

Experimental
(+ mode; 25V) Is this a match?

HH—H!!:! y !i '! | |

Database
(+ mode; 20V)

I I I I I
100 200 300 400 500

m/z



Example 1: 9-PAHSA

* At first glance it looks like a
match

e RT of the standard did not
match

* Fragmentation in negative
mode did not match

* lon ID corresponds to [2M+H]*
of stearic and palmitic acid

Intens. ]
x10%

1.25

0.75
0.50

0.257

1.00

Analyte

9-PAHSA
standard

\

L/\ ‘ khllLA

0.00 ==

1 12 13 © 14 Time [min]



Identifying Metabolites: The Big Obstacle
Identification with MS/MS

MS/MS (CID)
Compare MS/MS of putative ID’s in DB
MS/MS available in DB?
"4 N\
Yes No
"4
Does it match?
4 N\
Yes No

;

Confirm with
standard



Identifying Metabolites: The Big Obstacle
Identification with MS/MS

MS/MS (CID)
Compare MS/MS of putative ID’s in DB

;

MS/MS available in DB?

' N

Yes No
4
Does it match?
4 \
Yes No

;

Confirm with
standard



Identifying Metabolites: The Big Obstacle
Identification with MS/MS

MS/MS (CID)
Compare MS/MS of putative ID’s in DB

;

MS/MS available in DB?

' N

Yes No
4 \
Does it match? :' Fragment :
'4 N\ I Similarity Search |
Yes No I

I
l | l 1
. ! Neutral Loss '
Confirm with ' :

standard Molecular class or

type information



Identifying Metabolites: The Big Obstacle
Fragment Similarity Search

Home

isoMETLIN Simple Search Advanced Search Batch Search Fragment Similarity Search Neutral Loss Search MS/MS Spectrum Match Search MRM ~ Logout [ rmont ]

Fragment Similarity Metabolite(s) containing 3 fragment(s)

Search
METLIN 52097 NAME: Xanthohumol MASS: 354.1467 ‘wew MS/T-:IS‘ STRUCTURE:

Fragment 355.1511 o
miz

) 299.0892,
(Maximum 235.0942,
Number 179.0341,
of MIZis

5, 4 Frag. miz 1¢ Appm Intensity CE Predicted lon Type Predicted Fragment Structure
separated

by 179.0340 0 100.0 10, 20, 40 M+

comma)

Show | 10 v entries Search:

Tolerance 20 PPM .
299.0890 0 100.0 10, 20 [M-H+2H]+

Mode Positive v )

i o
Filter Out 5 % en 3 o = )
Fragments
No Structure Information
with is available
Intensity
Less than .
«

Order By APPM ® Intensity Showing 1 to 3 of 3 entries Previous n Next

Fragments
with
Structure

only METLIN 18901 NAME Asn Ala Glu MASS: 332.1332 View MSIMS STRUCTURE

1D [
Precursor : .

miz ; A
(optional)

T S

Metabolite(s) containing 2 fragment(s)




Example 2: Xanthohumol scaffold

Relative Intensity

100

50

-50

-100

Experimental
(+ mode; 20V)

Database

(+ mode; 20V)

200

250

300

350

400 450 500

m/z

OH



Relative Intensity

100

50

-50

-100

Example 2: Xanthohumol scaffold

Experimental
(+ mode; 20V)

176.0325

|

<
«

Database
(+ mode; 20V)

200 250 300 350 400 450 500

m/z

OH



Identifying Metabolites: The Big Obstacle
Neutral Loss Search

Home a isoMETLIN Simple Search Advanced Search Batch Search Fragment Similarity Search Neutral Loss Search MS/MS Spectrum Match Search MRM ~ Logout [ rmont ]
Neutral Loss Search Show 10 v entries o
Neutral - METLIN Neutral Loss Compound Predicted Neutral Loss
Loss 176:0929 ID Name [Fragment m/z] Mass APPM |: Intensity CE Structure Compound Structure
Tolerance 2 = = 43356 Tolnaftate 176.0323 307.1031 0 19 40

No Structure Information

[132.0781] /@\ P
Mode 2
Positive bire N)J\c
b

Neutral
Loss with

Structure
ohly 49507 Baicalin 176.0328 446.0849 1 100.0 10,20,

40 No Structure Information
is available

- N e

4092 Naphthol AS-BI a-D-glucuronide = 176.0322 547.0478 1 100.0 10, 20

is available s S
[372.0229] LT

- 4 > g
5754 Orotidine 176.0322 88.0594 1 107 10, 20 P
No Structure Information } o
is availablo
[135.0164] A
el _}‘Jk
4090 4-Aminopheny! 1-thio-3-D- 176.0323 301.0620 1 100.0 10, 20 N
glucuronide 40 No Stucturainformation I {
[126.03701 o —



Example 2: Glucuronide loss

100

Experimental
(+ mode; 20V)

50

. 1760325 |

|

Relative Intensity
0

-50

Database
(+ mode; 20V)

200 250 300 350 400 450 500

-100

m/z



Relative Intensity

100

50

-50

-100

Example 3: Acetaminophen-sulfate

Experimental
(+ mode; 20V)

79.9568

Database
(+ mode; 20V)

100 150 200

m/z

T 7~
AT



Example 4: N-acetylmuramic acid

Relative Intensity

100

50

Experimental
(+ mode; 12V)

Database
(+ mode; 1|0V)

100

150 200 250

m/z

Is this a matcoh?




Example 4: N-acetylmuramic acid

Relative Intensity

100

50

-50

-100

Experimental
(+ mode; 12V)

-

Standard
(+ rpode; 1|0V)

100

150 200 250

m/z



Identifying Metabolites: The Big Obstacle
Identification with MS/MS

MS/MS (CID)
Compare MS/MS of putative ID’s in DB

;

MS/MS available in DB?
"4 N\
Yes No
v \
Does it match? :' - -i?‘;ag_;-n;el_lt_ - : 1. Informatic tools: Metfrag,
4 N\ | Similarity Search | CFM-ID, CSI-Finger ID
Yes No I l I 2. Literature (peer-reviewed
! : i publications and
Confirm with : Netéter::cllioss : 3 I(Tilssertatlon.s )
standard =00 0 l==-mmooa- . Fragmentation rules

Molecular class or
type information



Identifying Metabolites: The Big Obstacle
Informatic tools for MS/MS prediction

In silico fragmentation for computer assisted
Metfrag  identification of metabolite mass spectra

Sebastian Wolf'"", Stephan Schmidt', Matthias Miiller-Hannemann?, Steffen Neumann'

CFM-ID: a web server for annotation, spectrum
prediction and metabolite identification from tandem

CFM-ID  mass spectra

Felicity Allen’, Allison Pon, Michael Wilson, Russ Greiner and David Wishart

Searching molecular structure databases with tandem
CSI:FingerID mass spectra using CSI:FingerID

Kai Diihrkop?, Huibin Shen®, Marvin Meusel?, Juho Rousu®, and Sebastian Bocker®'

Wolf, S. et. al. BMC Bioinformatics, 2010, 11:148
Allen, F. et. al. Nucl. Acids Res. 2014, 42 (1), 94-99
Diihrkop, K. et. al. PNAS, 2015 112 (41), 12580-12585



Identifying Metabolites: The Big Obstacle
Literature search for MS/MS prediction

* Large MS/MS spectra available in peer review articles (over 24,000 in
Pubmed)

* MS/MS not always HR but fragments can reduce number of putative
identifications



Example 5: Proline betaine

F Experimental
(+ mode; 22V)
i 0
3 ‘ /N\ OH
Article
s | (+ mode; 40V)
6IO 8I0 1CI)0 1;0 14|10

m/z

Lloyd, A.J. et. al. Br. J. Nutr. 2011, 106 (6), 812-824
Yang, Q. et. al. J. Sep. Sci. 2010, 33, 1495-1503



Identifying Metabolites: The Big Obstacle
Literature search for MS/MS prediction

 Other literature works (e.g. dissertations) can contain useful MS/MS
spectra



Example 5: Xanthohumol-glucuronide

100
|

Experimental
(+ mode; 22V)

50

Relative Intensity
0
|

Dissertation
(+ mode; 55V)

T T T T T T T
200 250 300 350 400 450 500

-100
|

m/z

Yilmazer, M. (2001) Xanthohumol, a flavonoid from hops: in vitro and in vivo metabolism, antioxidant
properties of metabolites and risk assessment in humans (Doctoral dissertation). Retrieved from https://
ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/fx719q33m



Identifying Metabolites: The Big Obstacle
Literature search for MS/MS prediction

e Caution is recommended with these resources as errors can be found



Identifying Metabolites: The Big Obstacle
Fragmentation Rules

1. Fragmentation results in
charged and neutral species

A-Bt A + B*



Identifying Metabolites: The Big Obstacle
Fragmentation Rules

2. Product ions mainly depend
on number and strength of
the bonds

Aliphatic < aromatic < conjugated
C-heteroatom < C-C



Identifying Metabolites: The Big Obstacle
Fragmentation Rules

3. Fragments from +H*or-  -itrogen rule:
H* mainly have even Fragment with even m/z -> odd

number of e number of nitrogen atoms

(exception: loss of halogen from aromatic
compounds)



Identifying Metabolites: The Big Obstacle
Fragmentation Rules

4. Cleavage of C-(N, O and

S) results in charge
migration to & G or In some cases both fragments

charge retention in (N, 0 €40 be detected and sum of
and S) by H* ’ nominal masses equals nominal
rearrangement (N, O and  Vvalue of [M+H]*+1 or [M-H]-1

S)



Example 5: N-oleyl taurine

100

126.02 | (MAH]*
390.27

265 25 126.02
IM+H]*+1: 265 + 126 =390 + 1



Example 6: Carnitine

100

<

60.08 103.04
[IM+H]*+1: 60 + 103 =162 + 1



Identifying Metabolites: The Big Obstacle
Identification with MS/MS

MS/MS (CID)
Compare MS/MS of putative ID’s in DB

;

MS/MS available in DB?
"4 N\
Yes No
v/ \
Does it match? :' - i‘;agn;el_lt— - : 1. Informatic tools:. Metfrag,
' N\ I Similarity Search| CFM-ID, CSI-Finger ID
Yes No I l I 2. Literature (peer-reviewed
l : :—’ publications and
C : , Neutral Loss dissertations)
onfirm with Search )
IS A I 3. Fragmentation rules
standard
Molecular class or l

type information Reduction of putative ID’s

;

Commercial standards
or analog compounds



Identifying Metabolites: The Big Obstacle
Other considerations and pitfalls

e H* vs. Na*

1004

50 1

PC(14:0/14:0); + mode
184
[M+H]*
678

150 7<[n ‘%%O A'm <§0 6;0 7§0

100
147
504
[M+Na]*
=205
495 «——
] 3]517_“\.; -39 700
l“lk 1 L 1 ‘fll“ ! ll 1
110 210 310 410 510 640 710

Busik, J. V. et. al. Lipidomics, Methods in Molecular Biology 2009, 579



Identifying Metabolites: The Big Obstacle

Other considerations and pitfalls

* |solation window and noise

100 -

337.1069

337.1592

337.2119

m/z

337



Identifying Metabolites: The Big Obstacle
Other considerations and pitfalls

9-HODE

* In source fragments | Experimental

[M+H-H,O1*

g | Database

o]
N NI NI N e T

Pinolenic acid



Identifying Metabolites: The Big Obstacle
Other considerations and pitfalls

9-PAHSA and stearic acid dimer

Experimental
o (+ mode; 25V)
* |sobars, similar structures and
multimers N
é L II!IIII!“ I| | |
Database
(+ mode; 20V)




Identifying Metabolites: The Big Obstacle
Conclusions

* Confirm ID with standards when possible
* Indicate level of identification

* Resources for MS/MS spectra interpretation can reduce number of
putative ID’s
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Multiple Reaction Monitoring (MRM)

» MRM transitions
(precursor -> product)
&

Q1 Q3
o I
0o-2"'50
o0 O

Specific CID: Specific
precursor ions fragmentation fragments



Transition optimization via pure materials

% »/ » MRM transitions
» j (precursor -> product)

- Auto-calibration via vendor software
- MRM transitions selected based on chromatographic
properties (S/N), ionization efficiency.

235



METLIN-MRM

QgQ experimental
optimization

T

METLIN-MRM

Library Community

Statistical ranking —
from experimental MS/MS Search "
} -« — — >
Curate
. . Accession
Publ t /
ublic repository number

of transitions

o — )
¥ =
Literature

236



Computational optimization

Q Statistical Experimental MS/MS spectra
% ranking CH,

H3C A~
O 3 \/.\‘/
4 HsC { NH,
Target molecule - NOH é v
Leucine I

Leucine CH; ﬁle

F;(.

CH; O

ﬁ H5C ; \\‘ OH é J-I | I
NH,

Isoleucine

0
CI3C/\/\|(£I\OH é J I Ll I_

Norleucine m/z



METLIN-MRM

1) Go to http://metlin.scripps.edu
2) Click on MRM/METLIN-MRM

Simple Search Advanced Search Batch Search Fragment Similarity Search Neutral Loss Search MS/MS Spectrum Match Search MRM ~

METLIN MRM
MRM Upload
MRM Download




o

Transitions Show | 10 4 entries
View Selected Fragment(s)
Precursor

203.1
203.1
203.1
205.1
205.1

Precursor
Showing 1 to 5 of 5 entries

Agilent

View Selected Fragment(s) Show 10 4 entries
Precursor
203.08208
205.09768
205.09768

Precursor
Showing 1 to 3 of 3 entries

Sciex

View Selected Fragment(s) Show ' 10 4 entries
Precursor
203.1
205.09768
205.09768

Precursor
Showing 1 to 3 of 3 entries

User Supplied MRM Data
Show | 10 + entries

MRM
D I Name

2 L-Tryptophan
2 L-Tryptophan-13C

2 5-Hydroxy-L-
tryptophan

8 5-Hydroxy-L-
tryptophan (5-HTP)

9 5-hydroxy-L-
tryptophan

9 5-hydroxy-L-
tryptophan

MRM ID Name

Showing 1 to 6 of 6 entries

1% Adduct
M-H
M-H
M-H
M+H

M+H

|: Adduct

M+H

M+H

|: Adduct
M-H
M+H

M+H

Adduct Precursor

M+H 205
M+H 216
M-H 219
[M-H)- 219

[M+H}+ 221.2

[M+H}+ 221.2

Adduct Precursor

Name: L-Tryptophan, MID: 33

Mode Col. E.
- 20
- 40
- 10
+ 10
+ 10
Mode Col. E.

Name: L-Tryptophan, MID: 33

Mode Col. E.
- 20

+ 8

+ 20
Mode Col. E.

Name: L-Tryptophan, MID: 33

Mode Col. E.
- 20
+ 20
+ 15
Mode Col. E.

Name: L-Tryptophan, MID: 33

Product

146

144

157

162.1

204

Product

Col.

E. Mode DOI

21 + 10.1007/s11306-017-1264-1
21 + 10.1007/s11306-017-1264-1
22 - 10.1007/s11306-017-1264-1
24 - 10.1016/j.aca.2015.08.056
19 + 10.1177/1535370217694098
1 + 10.1177/1535370217694098

Col. E. Mode DOI

Mz

116.1

142.1

159.1

188.1

146.1

Mz

Mz

116

188

146

Mz

Mz

116

146

188

Mz

HMDB

HMDBO00829

HMDB00929

HMDB00472

HMDBO00472

HMDB

Search:

Rating

G0 Q0
G0 Q0
G0 Q0
G0 Q0
G0 Q0

Rating

Previous Next

Search:

Rating

40 Q0
G0 Q0
40 Q0

Rating

Previous Next

Search:

Rating

40 Q0
40 Q0
40 Q0

Rating

Previous Next

Search:

Formula

C11H12N202

*C11H12N202

C11H12N203

C11H12N203

Formula

Previous Next

PubChem

PubChem

239



NS CIMS

N MRM

1) Go to http://xcmsonline-mrm.scripps.edu
2) Click on Create Job/XCMS-MRM

Home Create View XCMS Stored Account XCMSOnline Logout [ xdomingo ]
Job~ Results Institute Datasets

SELECT DATASET(S) CREATE TARGETED LIST SAMPLE INFORMATION SELECT PARAMETERS

SELECT DATASET(S)

(See File Formats for more information)

Load New Dataset Select Dataset

ID 4 Dataset Name File Count

Please upload or select dataset(s)

240



XCMS-MRM

[ - []

SELECT DATASET(S) CREATE TARGETED LIST SAMPLE INFORMATION SELECT PARAMETERS

TARGETED LIST

Target_list.csv

(List Example)

Show| 10 % |entries

Name Precursor Product RT.min RT.max Prec.Labeled Prod.Labeled
Leucine 1321 43.096
Leucine 1321 44.096

Isoleucine 1321 44,096
Isoleucine 1321 69.066
Leucine 1321 86.086
Isoleucine 1321 86.086
Phenylalanine 166.08 103.096
Phenylalanine 166.08 120.076
Phenylalanine 166.08 130.996
Tyrosine 182.08 136.096

Previous 3 Next

]

241



XCMS-MRM

SELECT DATASET(S)

a un »H» NN

Dataset ID
214178
214178
214178
214178
214178
214178

File ID
1518191
1518192
1518193
1518194
1518185
1518196

CREATE TARGETED LIST

File Name
Plasma_0.mzML
Plasma_50.mzML
Plasma_la.mzML
Plasma_5.mzML
Plasma_10.mzML

Plasma_100.mzML

SAMPLE INFORMATION

Auto-generate Targeted List

Wl [

Sample Type Sample Grouj

Sample-Calib
Sample-Calib
Sample-Calib
Sample-Calib
Sample-Calib
Sample-Calib

-

El

SAMPLE INFORMATION SELECT PARAMETERS

SAMPLE INFORMATION

Auto-generate Targeted List

Leucine Isoleucine Phenylalanir Tyrosine Caffeine

0
S0
1
S
10
100

S

e



a un H NN

Dataset ID
214178
214178
214178
214178
214178
214178

File ID
1518191
1518192
1518193
1518194
1518185
1518196

XCMS-MRM

SAMPLE INF

Auto-generate

File Name Sample Type Sample Grouj Leucine Isoleuc

Plasma_O.mzML v Sample v

o . MLA Blank
asma_50.mz | Calibration .
Plasma_la.mzML Sample-Calibration v
1 QC |

Plasma_5mzML —wsampre—1—

Plasma_10.mzML Sample -~ v

Plasma_100.mzML Sample -~

243



XCMS-MRM

SELECT DATASET(S)

10

10

linear

CREATE TARGETED LIST SAMPLE INFORMATION

SELECT PARAMETERS
Average peak width (seconds)

Scans per second (virtual)
Detection limit
Quantification limit

Calibration Curve

SELECT PARAMETERS

<«

244



XCMS-MRM

Logout [ xdomingo ]

Submit Date Finish Date Parameter ID# Log Shared Bowicac Festiits
2017-12-18 15:08:07 2017-12-18 15:11:56 name (24427) View Log NOT SHARED hash: dfd21fOcfb26d06028d8139defef30fc
Precursor: 195.08
tiD 4 Name Precursor Product RT(min) RT(max) RT(mean) LOD LOQ R2 p-value FC cv
: Caffeine tID: 13
1 Leucine 1321 43.096 0.709 17 148 1.00 Producter 85 056 ve 110.066
Peak area R-squared: 1
2 Leucine 1321 44,096 0.707 17 129 1.00 .
3 Leucine 1321 86.086 0.704 17 129 1.00 s | .
s 8
4 Isoleucine 1321 44,096 0.708 1.705 129 0.98 § g
8
5 Isoleucine 1321 69.066 0.706 1703 129 0.99 e .
£
6 Isoleucine 1321 86.086 0.705 1701 129 1.00 is .
g
7 Phenylalaniné66.08 103.096 2.012 3.004 255 1.00 R
8 Phenylalanineé66.08 120.076 2.01 3.003 255 0.99 00000 1000000 1200000 1400000
Peak Area (Product 83.056)
9 Phenylalaniné66.08 130.996 2.007 3.003 255 0.99
10 Tyrosine 182.08 136.096 0.607 1.599 122 1.00 Aligned Peak Profiles
Caffeine
n Tyrosine 182.08 146.996 0.604 1.598 123 1.00
g |
12 Tyrosine 182.08 165.096 0.601 1597 123 1.00 4
13 195.08 83.056 2.863 3.867 338 1.00 s g
14 Caffeine 195.08 110.066 2.862 3.864 338 1.00 =
15 Caffeine 195.08 138.056 2.861 3.862 338 1.00 8.
16 Tryptophan 205.09 146.046 2512 3.501 3.07 1.00 o
. T
17 Tryptophan 205.09 188.066 2551 3499 3.07 1.00 0w seae s ae
time (min)
18 Pa."mthen'c 220m 69.996 2204 3196 278 1.00
acid
19 ::i':mhen'c 220m 90.096 2202 3195 278 1.00
Pantothenic
20 acid 220M 184.096 2201 3194 278 1.00
21 Arachidonic ;.\ g 67.096 8.om 10.903 1014 1.00

acid



X

GROUPING NAMES
Leucine (1)
Isoleucine (2)
Phenylalanine (3)
Tyrosine (4)
Caffeine (5)
Tryptophan (6)
Pantothenic acid (7)
Arachidonic acid (8)
Cholesterol (9)
Palmitoyl-carnitine
(10)

Manual Adjustment

Lower Bounds: 3.3248
Upper Bounds: 3.68146666666667

(= o ]

XCMS-MRM

Group: Caffeine (5), Sample: Rafa_sample_4_1.d.zip (1515155)

Transition 13 (Prec: 195.08 / Prod: 83.056)

50k

25k

Transition 14 (Prec: 195.08 / Prod:

200k

100k

, Transition 15 (Prec: 195.08 / Prod:

000k

500k

110.066)

138.056)

E c
i)
°
] 3
4 3 EIC (no baseline) [= Integrated Area]
g 5 —+ Raw EIC
[ -3 Labeled Standard
3.35 3.4 3.45 35 3.55 3.6 3.65 3.7 3.75 38 3.85
Rt (s)
IS c
2 °
2 3
2 ® EIC (no baseline) [= Integrated Area)
= s - Raw EIC
&y & Labeled Standard
3.35 3.4 3.45 35 3.55 3.6 3.65 37 3.75 38 3.85
Rt (s)
§ c
k]
°
] 2
= -~ - i
-] v ~ ® EIC (no baseline) [= Integrated Area]
s ~ g —+ Raw EIC
e / = 3 Labeled Standard
7/ =~
3.35 3.4 3.45 35 3.55 36 3.65 3.7 3.75 3.8 3.85
Rt (s)
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USING ISOTOPES

X
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] | ]1 HO)WJ\OH

NH,

m/z
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TABLE OF
CONTENTS

* ENDOGENOUS ISOTOPIC DISTRIBUTION OF A FEATURE.

* GENERATION OF ISOTOPIC DATA USING UNIFORMLY-
LABELED MICROORGANISMS.

* IDENTIFICATION OF UNKNOWNS USING ISOTOPES.



ISOTOPIC
DISTRIBUTION

The isotopic distribution of a biomolecule

lIsotopes: Atoms of the same element with different mass due to

the presence of neutrons in the nucleus.

2H

12C
13C

14N
15N

160
170
180
31P
3ZS
335
345
365

* Only stable isotopes

1.0078
2.0141

12.0000
13.0034

14.0031
15.0001

15.9949
16.9991
17.9992

30.9738

31.9721
32.9715
33.9679
35.9671

99.985

Biomolecules:
p- C-H-N-O-P-S

1.11

99.64
0.36

99.76

0.04
0.20 \/\”/”’f (&

100

94.93
0.76
4.29
0.02

4-Phosphopantothenoylcysteine



ISOTOPIC
Information extracted from the isotopic distribution of a feature

< 100 | 496 3407 LysoPC(16:0)

= C24H5007NP

é - [M+H]*

O >

c > :

- e} | M+1

© S| iz 27%

v '3

S I O M+2

= '3 d M+3

© | 1 <1%

[T
495 496 497 498 499 500

m/z

Data acquired with a Bruker Impact Il Q-ToF (Resolution™ 34.000)



ISOTOPIC e
Example I. Isotopic distribution

Unknown feature Simple Search List of putative formulas:
m/2=241.0311 wase * C6H12N20452
k% 241.0311
T
» Tolerance 5 PPM v » e C14H802S
I Charge Neutral
Positive * C6H4N605
Negative
Group 1 Group 2 W ance %)

2H 2.0141 0.015
12¢ 12.0000 98.89
13

,\? 100 - 241.0311 C 13.0034 1.11

K 14N 14.0031 99.64

8 15N 15.0001 0.36

c 160 15.9949 99.76

g 170 16.9991 0.04

P 180 17.9992 0.20

) 31

k= P 30.9738 100

© 325 31.9721 94.93

v 33 32.9715 0.76

-E @ 33.9679 4.29

(© | . 35.9671 0.02

Q

o O - I 1

| 1 | 1 | 1
240 241 242 243 244 245

m/z



ISOTOPIC e
Example I. Isotopic distribution

< 100 - 241.0311 & 100 - 241.0318 C14H802S
Yy Yy
(&} (&)
C [
(¢4 (¢0)
© o
C C
> >
o] o]
@ (¢0)
(O] Q
2 >
L L
o o |
& 0- | | LN b [
1 1 1 1 1 1 1 ] ] ] 1 1
240 241 242 243 244 245 240 241 242 243 244 245
m/z m/z
& 100 241.0316 C6HAN605 %
= 6
o Z
o J
©
C
=}
o]
@
Q
>
©
g 0 . | i NH2 O
240 241 242 243 244 245
m/z HO S ~
S OH
© CYSTINE "M

Simulation of isotopic distributions: https://www.envipat.eawag.ch/



ISOTOPIC
DISTRIBUTION

Mass defect of a biomolecule

(1Mass defect: Difference between an element exact mass and its

nominal mass.

Exact mass (Da) | Nominal mass (Da) | Mass defect (Da)

1.0078
12C 12.0000
14N 14.0031
160 15.9949
31p 30.9738
328 31.9721

* Only most abundant isotopes

12
14
16
31
32

0.0078
0.0000
0.0031
-0.0051
-0.0262
-0.0279



ISOTOPIC o
DISTRIBUTION Discrimination based on mass defect

Search of 5000 random molecules in METLIN

o _
2
H
@ _ « CE (20:5) (C47H7402)
« DAG(40:5) (C43H7405)
« Cer(d18:1/24:1)
_3 - (C42H81NO3)
§ * Heptatriacontane
'S (C37H76)
Q<
3] o
©
A
(1°)
= N _
o
* Inositol trisphosphate
(C6H15015P3)
S - * Glucose bisphosphate
> (C6H14012P2)
" * Sulfolactate (C3H606S)
T * Triazolidinonethione

I I I I [ [ I

(C12H12N30SBr)
0 200 400 600 800 1000 1200

Monoisotopic mass (Da)



ISOTOPIC
Example Il. Mass defect

Unknown feature Experimental MS/MS of 122.0270 in positive mode
m/z=122.0270 58.9954
< 100 A
T o
=
S
C
%k S
0
1 © 76.0221
2
o 43.0435 86.9901 122.0269
o« O -l 1 | I | 1 I 1 lf 1
Group 1 Group 2 0 20 40 60 80 100 120 140
m/z
<
° O,S,P
) 4 4
A o O
= o
O
Q
5
23 HO Y SH
= =
$ i NH,

0 200 400 600

Monoisotopic mass (Da) Cysteine (C3H7NOZS)



ISOTOPIC
DISTRIBUTION

Example Il. Mass defect

Putative metabolite

_é_ H H
H
NH,, \S{
58.9954
S\i 100 -
(]
O
c L H
(qv) \ H
KC _g‘ :
c H H N
- \ H \H
e N
@ / ‘& 76.0221 "
@ H H \ _kH_\
> S
— H
0 43.0435 86.9901 N\ 122.0269
Q © %
o O0- | | ;
1 | | | | | |
20 40 60 80 100 120 140

m/z



ISOTOPIC . :
DISTRIBUTION Multiple charged species

 Very common phenomenon in proteomics. Rarely observed in metabolomics.

1447.9650

[MHT [M-H]

M+1-H M—H_1
1 100

~1 Da

. =
o Relative abundance(%) g

CARDIOLIPIN (7 2 :8) 1448 1449 1450 1451 1452 1453

723.4788 m/z
C81H142017P2 (M-2H]>

[EEY
IS
IS
~N

=

o

o
1

M+1-2H M-2H_

> . 0.5

~0.5 Da

o Relative abundance(%)

723 7235 724 7245 725 7255 726  726.5
m/z



- -
DISTRIBUTION Example Ill. Multiple charged species

Which information can be extracted from the

presence of a multiple charged feature?
1. Annotation. Incorporated into XCMS Online.
2. Presence of two or more highly ionizable functional

groups: phosphates in negative and amines in positive.
3. Discrimination from features coming from single

charged molecules.



- -
DISTRIBUTION Example Ill. Multiple charged species

CARDIOLIPIN(72:6) S 4
T4 T o W o T /\(\O/P\

C81H142017P2

/\/\/\/\ /\/\/\/\H/
MaSS=14489722 HO . [t H
/\(\
/\/\/\/\ /\/\/\/\[(

o)

O Abundance of [M-H]- and [M-2H]?% ions is similar for this family of molecules

(depending on the instrument).

1. Typical profiling experiments in untargeted lipidomics go up to m/z=1000-1200.
The [M-H] ions are overlooked. ’

2. Use of [M-2H]?% ions (range 670-760) to study these molecules. ‘
3. This mass range is the same for the major phospholipid class PE. ’

4. The isotopic pattern can be used to differentiate between PE isotopes and
cardiolipin double charged parent ions. ‘
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GENERATION OF . .
ISOTOPIC DATA Uniformly-labeled metabolites

Use of intrinsic stable isotopes of
metabolites to gain insight about features
and help in annotation and identification

Growth of
uniformly-labeled
microorganisms

Generation of molecules where all atoms
are stable isotopes: uniformly-labeled
metabolites




GENERATION OF , _ ,
ISOTOPIC DATA Growth of uniformly-labeled microorganisms

13C-Glucose 13C-Labeled Metabolite
’ O__OH Microorganisms extraction
H H
H

Lipids

m“‘rm

* Bacteria (Weiner, 2015) _ N
) >99% labeling eff
* Yeast (Rampler, 2017) o labeling etticiency

* Plants (Bueschl, 2014)

Polar metabolites
0
HM'}J'LOH
Bioreactora E H,



GENERATION OF , ,
ISOTOPIC DATA Uniformly-labeled extracts as internal standards

Add to samples as Quantification of
internal standards many compounds
— Sample — 13C-labeled IS
Untargeted generation of X
0 accurate MS/MS spectra of =
”")\Efo” the 13C-labeled molecules E_J,
e ——
\;} We envisioned the
;} opportunity to generate a 2
vast isotopic MS/MS data to é ‘ H
help identifying compounds = M Y - /l Ll —



GENERATION OF . . ,
ISOTOPIC DATA Generation of isotopic data

pem— pumm—

Lipid extraction —> Lipidomics Peak detection Sorting of
alignment and isotopologues
integration

12
C-labeled _ Reversed-phase —=

Polar metabolites| (hydrophobic)

extraction
HILIC
B3C-labeled  |_ (hydrophilic) i
1. Samples 2. Sample prep 3. LC/MS 4. Data analysis
Feature (m/z) Isotopologues (m/z)
90.0546 .
90.0546 6. Analysis of
93.0645
MS/MS spectra
104.1066
104.1066
109.1231

5. List of isotopologues XB3CMS: Huang et al., Anal. Chem., 2014.



GENERATION OF . ]
ISOTOPIC DATA Analysis of MS/MS spectra: overview

1907 12C-labeled extract Am=2.0068 Am= 10.0337
. 2 carbon atoms 10 carbon
o
&\, Am=5.0167 atoms
3 5 carbon atoms Am=5.0169
S 5 carbon atoms
S
c
>0
0
O
)
=
: leoope) Mo )
o' 12C 12.0000
L 13.0034
1004 13C-labeled extract
75 100 125 150 175 200 225 250

m/z

Use this information to gain insight about
structural properties of molecules




GENERATION OF
Workflow for the identification of uniformly-labeled metabolites

MS and MS/MS data collection and alignment

1. Known metabolite with known
“ MS/MS spectra=>  Generation of

| MS/MS data of the 13C isotopomers
\1, Were any results found? \1, (>100 incorporated into iSoMETLIN).

Yes No 2. Putative metabolite with unknown
\l, MS/MS spectra—> ldentification of

Match with known compounds.
MS/MS spectra 3. Unknown metabolite—> Tentative

| discovery of compounds.

iAny match found?i

Yes No Mass shifts
> Fragment Search

Neutral loss search
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IDENTIFICATION
WITH ISOTOPES

Relative abundance (%)

100+

o o N
o O O o

100 A

N A O
© O O o o
[ 1 1 [

Example I. Known metabolite, known MS/MS

L |+' Chemical Formula: C,H,,NO_P
* ~8"120 6
HO/Y\O’FI)\O/\/N\ .
& O sn-Glycero-3-phosphocholine
258.1079
12C-|abeled extract Lt
[6)
== 00
i | - o 0O ©
HO o'g}o’\/"'\ HO "~ ~PH - =
OH b FoR |- S
104.1065 ° A~ )
56 0050 124.9991 D A R c0
: PEN
166.0614
| 184.0712 |
| T
91.1129 | 171.0785 |
i o] 127.0062 189.0894
_ wn 5 > 266.1355
|- -
| o
= = =
] = = N,
[a) [s) U
13 o
l(li!a.belleglle>.<tralc’lcll109_12?6l -
25 50 75 100 125 150 175 200 225 250 275
m/z
O T )
+®  Chemical Formula: 13C4H,,NO.P

Ho”\r’\o*g-\o"v
H

"o

13C-sn-Glycero-3-phosphocholine




IDENTIFICATION . .
Example Il. Putative metabolite, unknown MS/MS

@) 0]
List of putative metabolites: I/\)]\ LI |!|+/
Search of m/z: + LysoPC(15:0) (C23HABNO7P) 7 1 C1IH22 I d g
482.3277 ==+ LysoPE(18:0) (C23H48NO7P) - OH -
Error: 10 ppm « PUBCHEM_54608258 (c24H5m I/\)]\ I "
« PUBCHEM_71749542 (C30H43NO4) Y c1aH28 O/Y\O/ (I)_\o/\/ 2
OH
i 4823277
1001 12C-]abeled extract *
80 - _
@)
__ 607 LysoPE(18: nfirm &
S 62.0604 yso ( 8 0) co f ed 341.3094 e
g T M4050  with standard 464.3165| =
S 20 - °
° 421.2672 N
c 0 | | \ . g | ! . | L
- T
8 1 e
= 46.0556 <> <>
© 40 - N N 487.3921
o >< = 2
X ~042.0063(2C) = 2
o =
- H
80 - S S
13C-labeled extract o o :
1004 ~>C-labeled extrac o o 505.4042
50 100 150 200 250 300 350 400 450 500

m/z



IDENTIFICATION : ,
Example Ill. Putative metabolite, unknown MS/MS

Unknown feature Simple Search List of putative metabolites:
m/z=243.0613 e Uridine (C9H12N206)
Found in a different project mass 2430613 + Pseudouridine (CO9H12N206)

T » Tolerance 10 PPM . » * CI10H8N602
* C11H1702PS
Charge Neutral
* sk % Positive * C13H12N20S
- Negative
Group 1 Group 2 N * Others

=

~

)

=

243.0619
S 100 - 153.0285 4
m [ ] [ ]
2 No  hits with
(0]
T METLIN nor other
-]
X spectral database
e
'% 183.0411
< 110.0226 140.0336 |
o |
O 1 1 | | 1 1 1 1
75 100 125 150 175 200 225 250

m/z



IDENTIFICATION : ,
Example Ill. Putative metabolite, unknown MS/MS

* Uridine (CO9H12N206) * CI0H8N602 * C13H12N20S
* Pseudouridine (C9H12N206) * C11H1702PS * Others

Pseudouridine confirmed with standard

100 9 12C-|abeled extract ) ¢
153.0302 ;-1 o 243.0618
80 - a1 f ar
%97 ol |y
X s HO oH
o 40 - NES 183.0411 "~ on
O O)\N
C H HN
O 20 - -
o 110.0252  140.0338 o
> O | 1 y
5 I
2 50 - 115.0399 1&-)051(0_) i;
© x 2
= 40 - - — 190.0645 &
oc ~l = N —
N8 o ©
60 - G g N o
(e)) w
o 2 S
80 - - =
o
100 4 13C-labeled extract 159.0501 252.0927
|| || | 1 || || || |
75 100 125 150 175 200 225 250

m/z



IDENTIFICATION
WITH ISOTOPES

Example IV. Unknown metabolite. Tentative discovery

Search of m/z: List of putative formulas:

608.3972 42 molecular formulas

Neutral Loss Search

SN

Neutral 141.0206 O
. Loss . \ O
Error'. 19 ppm ) With 30 carbon atoms: Toerance ) 10 0pt|9lﬂ’§
No hits in METLIN 10 PPM " HO” \
and PubChem * C30H53N7045S Mode — OH
Phosphatidylethanolamine
* C30H58NO9P * 2 carbon atoms
* Intensity> 30%
467.3766
1007 12C-labeled extract )
80 - Q
__ 60+ g
X —
Z 40- < 141.0206 =
S 590.3859 «—>
©
° 44.0497 6%8-3972
s 0 i, : :
-8 46.0560 <> I l
- v 497
_02) 20 o 620 482:;8 o7
5 4020063 (20) 3 -
0 N
143.0272 (2C
X .- = < (2€) o
80 - o
100 3C-labeled extract 495.4703
—rt r Tt 1 r Tt r Tt T 1 | I R T 7 T T 1 T T
100 200 300 m/z 400 500 600



IDENTIFICATION , .
WITH ISOTOPES Example IV. Unknown metabolite. Tentative discovery

v" Molecule with 30 carbon atoms. Molecular formula: C30H58NO9P. .,

\, -
Phosphatidylethanolamine group (C5H14NOG6P): HO/\(\ \\ T,

v
v" Rest of molecule: C30H58NQO9P — C5H14NO6P = C25H4403.
v

PE phospholipid: /\/\/\/u\
' .
One more oxygen!! ™ C\/\/\/\”/
0

PE phospholipid with an oxidized fatty acid. Total number of carbon atoms= 25.

NH_,_

AN

AN

Biological context:

d Oxidized PE are products of ozonolysis in bronchoalveolar lavage (AlImstrand, et al.,
Anal. Biochem., 2015).

O Palmitoyl-9-oxo-nonanoyl-PC is a product of lung surfactant phospholipid oxidation
in smokers (Kimura, et al., Lung, 2012).

NH,

Chemical Formula: C3oHsgNOgP
Exact Mass: 607.3849 Oxp-

1-hexadecanoyl-2-(9-oxo-nonanoyl)-sn-glycero-3-phosphoethanolamine




v The endogenous isotopic distribution of a feature may help with its

annotation and identification:

1. The M+1, M+2 and M+3 relative intensity aids to narrow down the possible
molecular formula of a feature.

2. The mass defect is an indicator of the presence of different atoms in the molecule,
helping with its annotation and the analysis of its MS/MS spectra.

3. The generation of multiple charged ions is a valuable tool for the analysis of

metabolites with high molecular weight, but also a double-edged sword.
v" A precious endogenous Vs isotope-labeled MS/MS data can be generated from

extracts of isotope-labeled microorganisms. This data can be used to:
1. Generate MS/MS data of isotopes of known molecules for quantitative
metabolomics.
2. Help with the identification of metabolites that lack of MS/MS data in databases.

3. Discover new metabolites.



g Advanced ¢°
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Metabolomics e

 Primary Experimental and Informatic Challenges

* Key Algorithms in Creating Reproducible Data
e Computational Metabolite Data Annotation
 Pathway Analysis & Multi-Omic Integration
* Identifying Metabolites from Scratch

June 3@

Y . . . ---- 09:00 am Begin ----
e Statistics in Design & Interpretation ... 15.15am sreak -

---- 12:00 pm Lunch ---
e Activity Metabolomics - 02:15 pm Break -



s Advanced &
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Metabolomics e

 Primary Experimental and Informatic Challenges

* Key Algorithms in Creating Reproducible Data
e Computational Metabolite Data Annotation
 Pathway Analysis & Multi-Omic Integration
* Identifying Metabolites from Scratch

June 3@

Y . . . ---- 09:00 am Begin ----
e Statistics in Design & Interpretation .. 10.15m Breax —

---- 12:00 pm Lunch ---
e Activity Metabolomics - 02:15 pm Break -



Autonomous Strategies [ @@’

*Moving metabolomics into the future
* Automation
*Robots
* Netflix
*Smart systems
*Simple literature reviews
*Watson work

*Wrapping your own cognitive learning
suit



Autonomous Strategies

*How many people have a
robot in their labs?

*How many have automated
workflows?

L



Autonomous Strategies

%’ transcriptic

The Emerald Cloud Lab

DISCOVERY BIOLOGY

ON DEMAND At your command

Brian Frezza former Ghadiri lab

The Automation of Science

Ross D. King,l' Jem Rowland,* Stephen G. Oliver,” Michael Young,3 Wayne Aubrey,1
Emma Byrne,* Maria Liakata," Magdalena Markham,* Pinar Pir,? Larisa N. Soldatova,’
Andrew Sparkes, Kenneth E. Whelan,® Amanda Clare®

The basis of science is the hypothetico-deductive method and the recording of experiments in
sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,”
which advances the automation of both. Adam has autonomously generated functional genomics
hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses
by using laboratory automation. We have confirmed Adam’s conclusions through manual
experiments. To describe Adam’s research, we have developed an ontology and logical language.
The resulting formalization involves over 10,000 different research units in a nested treelike
structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical
description. This formalization describes how a machine contributed to scientific knowledge.

www.sciencemag.org SCIENCE VOL 324 3 APRIL 2009



Autonomous Strategies — robots ¢ 1

*Robot prices have dropped !
*No excuse to not have automation

*Software has been greatly improved
*Drag and drop systems ==

350

250

opentrons

c
S
- 200
c
]

150

Sales

112 114 113
100

50

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Industrial robot sales — statista.com



Autonomous Strategies

*Easy automation via IFTTT (if that then do
this)
* Get notifications
e Start a second

Temperature
& O
<
co2 Humidity
| eB @
SSSSS

=)

P=4

eeeeeeee ® Light intensity

o

-----
eeeeeeeeeeeee

microbot



Autonomous Strategies - netflix +

*Netflix has a problem.

*How to get hundreds of videos to hundreds of
people simultaneously around the world ?

@ AhAAAARAANK

\ AbhAAAARAAND




Autonomous Strategies — Netflix +

Online ./




Autonomous Strategies — Netflix +

Online



Autonomous Strategies — Simple Literature reviews

Citeomatic: Automated Literature Review

TRY CITEOMATIC

Citeomatic is a deep learning model for the citation prediction task. Unlike
previous work, Citeomatic is specifically trained to learn a robust model that
gives meaningful predictions, even when it's wrong. Relying only on the title
and abstract of a query paper also allows Citeomatic to to be a useful literature
review tool at any stage in the writing process.

i+ Citeomatic

Citeomatic identifies missing citations for you.
Not sure what papers you should be citing? Afraid of missing out on an obscure
reference? Give us details about your paper and we'll automatically recommend
papers you might want to cite

F InputURL Enter Paper Details

URL for an existing PDF

Find Citations

* Not quite as good as it sounds. * Looks historically



Autonomous Strategies — simple literature reviews

FlexiTerm

on |

No deaths
occurred during
these AECOPD. A
hospital-at-home

To determine whether inhaled
salt-bromide-iodine thermal
water improves lung function,
quality of lifesnd airway

T‘nere is a lack of ph

random!y assignedto receive 2-

Liabal il

we in -
the mxa‘;dadegznbn of Gionk acute exacerbations of chronic obstructive pulmonary disease
| productive cough #11. a.farm re acute exacerbations of COPD
for three months peryear (forat &3 AECOPD
least two consecutive years) ["quality of ife
without an underlying aetiology. QoL
Acute exacerbation of chronkc ...)... . chronic bronchitis
bronchitis (AECB) representsa | "
common complaint that leads
The outcomesand | Tedical o0
QoL of patients || Treatments admms‘fered to
admitted for an patientswith
acute e; especially
of COPD were when useen’ ‘multiple
poor.The major sofibinations, are not free of a common occurrents. and
factors lnﬂunnclhg hteractlons and side effects that A ,chdnlderize the natural hlstoryn!
Qol were can potentially lmpai(‘ we"""[*the disease. The exacerbationsiot
frequency of GOPD || studied ARG oY ts relationshi-| | only greatly reduce the quality of
exacerbationand with treatment in a group of A life of these patients, but also result
severity of patients with stage Il or 11| COPD in hospitalization, respiratory

failure and death.

* Downloadable open source

Neutralises source documents
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a“alygltglanlistry

& Cite This: Anal. Chem. 2017, 89, 11505-11513 pubs.acs.org/ac

Exposome-Scale Investigations Guided by Global Metabolomics,
Pathway Analysis, and Cognitive Computing

Benedikt Warth #1580 Seott Spangler, Mingliang Fang, + Caroline H. Johnson,” Erica M. Forsberg,
Ana Granados, Richard L. Martln, Xavier Dommgo Almenara,Jr Tao I—Iuan,* Duane Rmehart

J. Rafael Montenegro -Burke, ® Brian Hllmers, Aries Alsporna, Linh T. Hoang, Winnie Uritboonthai,
H. Paul Benton,” Susan D. Richardson,” Antony J. Williams,“ and Gary Siuzdak*"*

T

Watson
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The red fox jumped over the lazy brown dog

The red [?] jumped over the lazy brown
The red [? %i [ %& the & brown ¢




Autonomous Strategies - IBM

& As text
—— — o -
As bitmap images LTINS \-'\\\' Chemical names
\ e - found in the text of
1 documents
Picture of chemicals
found in the document o
Images

Partents also have (Manually Created)
Chemical Complex Work Units (CWU's)

\ 1 X .
1 : 5\ 3
&g .
VU ( :
Nomenclature ssuses: Valium has > 149
HyC
: . > o
Valium « Diazepam = CAS# 439-14-5 - Ch :
: M
(Trade Name) (Generic Name) (Chemical 1D #) ~NEIICa!
a nomenclature can
ALBORAL, ALISEUM, ALUPRAM, AMIPROL, ANSIOLIN, ANSIOUISINA, APAURIN, APOZEPA, ASSIVAL, ;
ATENSINE, ATILEN, BIALZEPAM, CALMOCITENE, CALMPOSE, CERCINE, CEREGULART, CONDITION, DAP, be daunting

DACEPAN, DIAPAM, DXAZEMLAS, DIAZEPAN, DIAZETARD, DIENPAX DIPAM, DIPEZONA, DOMALIUM,
DUNSEN, DUMEN, E-PAM_ ERIDAN, EVACALM, FALISTAN, FREUDAL, FRUSTAN, GIHITAN, HORIZON,
KITRIUM, LA LEMBROL, LEVIUM, LIBERETAS, METHYL, DIAZEPINONE, MOROSAN, NEUROLYTIR. NOAN
NSC-77518 PACITRAN PARANTEN PAXATE PAXEL PLIDAN QUETINIL QUSATRIL QUIEVITA RELAMINAL
RELANIUM RELAX RENBORIN RD 5-2507 S A R.L SAROMET SEDAPAM SEDIPAM SEDUNSEN SEDUXEN,
SERENACK SERENAMIN SERENZIN SETONIL SIBAZON SONACON STESOLIN, TENSOPAM TRANIMUL
TRANQUYN TRANQUASE TRANQUIRIT, TRANQUO-TABUNEN, YMBRIUM UNISEDIL USEMPAXAP VALEO
VALITRAN VALRELEASE VATRAN VELIUM, VIVAL VIVOL WY-34867




Autonomous Strategies - IBM

well as documents containing any other synonymous chemical
representation. A reader capable of absorbing 10 papers per day
would need nearly 100 years to go through this potentially
relevant literature, which is an unrealistic feat. Instead,
Watson'’ mines text so as to create a model for each
metabolite that represents all the terms present in the abstracts
of the papers that specifically mention the named metabolite.
We believe that this example demonstrates the predictive
potential of Watson in finding new potential EDCs similar to
the training set. More importantly, cognitive computing is not
limited to a specific mode of action and may be extended to
other toxicant classes such as carcinogens or genotoxic
compounds. Therefore, the tested machine-learning strategy
provides a valuable resource for future identification of suspects
and literature-based priority ranking. This holds the potential to
screen tens to hundreds of thousands of chemicals in some
hours/days which would not be possible manually. Especially
when merging this kind of prioritizing with screening of
untargeted LC—MS data as outlined above, this technology
opens up for new and unexpected discoveries regarding both
exposure and effect. This approach is of special value to the
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Medline contextual similarity score w.r.t. 15 compounds

0.02
0.018
0.016
0.014
0.012

0.01

0.008 —

0.006 \

0.004

0.002

Taurine Citrate Epitestosterone

Glucronide



Autonomous Strategies — roll your own

The ContentMine ©

The ContentMine is extracting 100 million facts from the academic literature

UK http://contentmine.org team@contentmine.org

@ Deep Dive 7 QuickStart @ Documentation B Showcase [EiPapers @ Data W Chat ¥ Forum

| twcngormaneoone  DeepDive Quick Start

| Quickiaunching

Running your first DeepDive app DeepDive helps you extract structured knowledge from kess-structured data with statistical inference without having to write ey

Next steps sophisticated machine learning code. Here we show how you can quickly install and run your first DeepDive application

Lau g or Installing DeepDive

ick launching

First, you can quickdy launch DeepDive with minimal installation using Docker by running the following command
bash <lcurl ~f35L git. do/getéeepéive)
Then selecting the deepdive_docker._sandbox option

909 Deesdive installer for Mac

1) deepdive S) jepyter_notebsok

2) deepdive_socker_sandbox &) pestgres

3) deepdive_exmmple_rotetosk ) run_deesdive_tests

4) deepdive_from_release 8) spouse_example

# Install vhat (enter to repeat epticns, a to see all, g o quit, or & rusder)? 2

Now, point your web browser to 2 terminal with shell access to an environment where DeepDive Is installed. You will find cur examples
included there as well

Home | About | Contact | Disclaimer | Privacy | Notes

4 deepdive-examples/spovse

() NarioNaL cancer iNsTiTuTE st

n example titorial if you point your browser to the tutorial notebook

NCI/CADD Group

OSRA: Optical Structure Recognition Application

News | Dependencies | Compilation | Usage | License | Download | Web Interface | Validation | Author

Description

OSRA is a utility designed to convert g P ions of structures, as they

appear in journal articles, patent dt books, trade Zi etc., into SMILES

(Simplified Molecular Input Line Entry Specification - see http://en.wikipedia.org/wiki/SMILES) or

SD files - a computer recognizable molecular structure format. OSRA can read a document in any N ‘

of the over 90 graphical formats parseable by ImageMagick - including GIF, JPEG, PNG, TIFF, PDF, N

PS etc., and generate the SMILES or SDF representation of the molecular structure images Cé N#ccr{ceccnicecec
encountered within that document.

Note that any software designed for optical recognition is unlikely to be perfect, and the
produced might, and probably will, contain errors, so curation by a human knowledgeable in
chemical structures is highly recommended.



Autonomous Strategies - Deepdive

DeepDive IS a genera| natural disease phenome disease genome
la nguage processing software Ataxia-telangiectasia

Perineal hypospadias

Nice tutorials online Androgen insensitivity ATM

T-cell lymphoblastic leukemia BRCA1

AR

Papillary serous carcinoma
* Python based : BRCA
Prostate cancer
* Has backend data to download g b _—
Ovarian cancer GARS
LB HEXB
Lymphoma
PMC-OA (PubMed Central Open Access Subset) Ly »
KRAS
Quick Statistics & Downloads m mr LMNA
Proxiine [ ; PP
Size 70GB Document Type Journal Articles P ancremb-eancer
PIK3CA
#Documents 359,324 #Machine Hours 100K Wilms tumor

#Words 2.7 Billion #Sentences 110 Million 1P63
Spinal atrophy
Downloads Download Full Corpus ~ Download Small Teaser v MAD'L,

Sandh‘isease
upo‘)phy
PATENT (Google Patents) VAPE
Charcot-Ma‘oth disease
Quick Statistics & Downloads Amyotrophi‘ral sclerosis CHEK2
Pipeline e Silver spastic p‘egua syndrome HE
Size 428 GB Document Type Government Document

# Documents 2,437,000 # Machine Hours 100K Spasnc at.’ 'egia
Fanc.-emia

#Sentences 248 Million #Words 7.7 Billion

Downloads Download Full Corpus v | Download Small Teaser v




Autonomous Strategies - ContentMine

*Pulls directly fror
literature T

*Licensing ?

‘‘‘‘‘

Opain
yyyyyyyy

wwwwww

* Many tutorials

,,,,,,,,,



Thank you and Questions? @T@g

Automation is coming and getting better
for metabolomics

°Lets do more

*Cognitive Natural language processing is
getting better and is a quick way of
understanding and dealing with large
data.
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* Do’s and don’ts of statistics
— Power analysis
— Analytical variation
— Multiple testing correction

— Parametric vs non-parametric

* Multivariate Methods and Machine Learning
— PCA

— Machine learning in a nutshell



Introduction

- The statistics workflow

Power

analysis

Data analysis

Exploratory

Predictive




Dos and don’ts of statistics

- Power analysis: how many samples?

Type I error Type II error
(false positive) (false negative)

- You're not
__pregnant

Power depends upon:

-
4 -
! £
-
-

«  Effect size -> (o — H4)/SD
* Type of experiment/hypothesis You'rs

* Sample size . |
e Error types t L‘-i

> power.t.test(delta=1, sd=0.5, sig.level=0.05, R
power=0.8)
~——— 1_B \

Qa
Two-sample t test power calculation
n = 5.090008




Dos and don’ts of statistics

- Power analysis: how many samples?

Question

v Sridhar Radhakrishnan R

1l 26.85 - Research Diets, Inc.

How can | perform power calculations for
untargeted metabolomics experiment, which is a
hypothesis generating experiment?

There is not such power analysis technique to calculate the
power in advanced in untargeted metabolomics?

Some guidelines...

[1] Vinaixa, M. et al. Metabolites, 2 (2012) 775-795



Dos and don’ts of statistics

- Power analysis: how many samples?

1) Our untargeted experiment is a pilot study (hypothesis
generating) and we are going to validate it (QgQ)*

2) 20 samples rule of thumb?™

3) Consider a ‘custom’ effect size®. (Delta=1 and SD=0.5),
(D=1 and SD=1), (D=1 and SD=2) ...

[1] Vinaixa, M. et al. Metabolites, 2 (2012) 775-795

[2] B.J. Blaise et al. Anal. Chem. 88 (2016)5179-5188

[3] Lenth, R. V. Am. Stat. 55 (2001), 187-193.

[4] Hajian-Tilaki, K. Casp. J. Int. Med. 2 (2011), 289-298.

[5] Wong, M. Y.; Day, N. E.; Wareham, N.J. Statist. Med. 18 (1999), 2831-2845.

[6] Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Lawrence Erlbaum.



Dos and don’ts of statistics

- Analytical variation

5 x 10° Raw data

Peak Area

Processing order ->

0) Always randomize samples!

1) Remove features detected in less than 50% of QC sample?
2) Determine the CV for each feature within QC class.

3) Remove features with CV > 20% within QC class?.

[1]W.D. Dunn et al., Nat. Protoc., 30(2011) 1060-1083 (Figure taken from)
[2] Vinaixa, M. et al. Metabolites, 2 (2012) 775-795



Dos and don’ts of statistics

- Hypothesis testing

Number of statistically significant features

With multiple testing correction, this is a flat line

I I I I
0 5000 10000 15000

Number of features

10



Dos and don’ts of statistics

- Hypothesis testing

Different multiple testing methods:

- Holm, Hochberg, Hommel...

- Bonferroni

- False Discovery Rate (FDR) (g-values)

> p.adjust(c(@.@@Z,@.89,@.@3,@.@@@2,@.76,@.@5,@.89)R
method="'bonferroni')

[1] ©0.0140 1.0000 0.2100 0.0014 1.0000 0.3500 1.0000

11



Dos and don’ts of statistics

- Hypothesis testing

Parametric or non-parametric?

I non-parametric test

[ parametric test
example#1, retinas (#mZRT=3252) example#2, retinas (#mZRT=7654)

4% 3%

4% 3%

example#3, serum (#mZRT=6131) example#4, neuronal cells (#mZRT=6831)

1% 2%

Picture from Vinaixa, M. et al., Metabolites, 2 (2012) 775-795

12



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

- One of the most used methods in metabolic profiling
- Dimensionality reduction

- @roups data into sets (principal components) of
correlated variables

- Principal components are uncorrelated

Data Scores Loadings

Y (N x Features)

X = | W | *

(Samples x Features)  (Samplesx N)



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

m/z

v

Retention time

14



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

An example...

15



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

Loadings

16



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

Loadings

PC3

PC4

17



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

Wild-type
(Sad)

Knock-out
(Happy)

18



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

The score plot  Knock-o

A

PC2

I
\

@

v

PC1




Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

Centering:

Feature 3
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Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

Centering:

i
Q
| -
>
)
(q0)
()
L

Feature 3
Feature 4

LN
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S
>
4
[g0)
()]
L

(@]
)
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>
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©
(]
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A\ Concentration
| mean
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Scaling




Scaling: pareto-scale

€ 2injea4

7 94n1ea4

G 94n1ea4

Z 2.n1ea4

T aJniea4

23

[1] van den Berg,R. A. et al. BMC Genomics. 7 (2006) 142



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

PC1

24



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

Misinterpretation of PCA

PC1

PC2

25



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

PC5!!]

26



Multivariate Methods and Machine Learning

- Multivariate analysis: PCA

Raw Data
Spikes
Water
A Reference
Sample
< ] o
o L
E '.' oio.
AN 1N ] .:o:.
O v -’
o PP )
° ....
o I
-1 B -
m [ ]
|—I| = °
| | | | |
-40 -20 0 20 40

PC1 (74.1%)

Picture from Fernandez-Albert et al., Bioinformatics, 30 (2014) 2899-2905

27



Multivariate Methods and Machine Learning

- Alternatives to PCA

PCA is powerful, but it is exploratory, not predictive

Exploratory multivariate methods:

e Datareduction
* Pulls out and prioritizes what features play the most important role in our

phenotype
* Detects important or analytical drifts
* Allow revealing signatures rather than just statistically significant
disregulated metabolites (p-values)

Alternatives to PCA:

* Linear Discriminant Analysis (LDA)
» Partial Least Squares (PLS) and PLS Discriminant Analysis (PLS-DA)
 Machine learning
 Knowledge discovery by accuracy maximization (KODAMA)
* KNN
* Random Forest

28



Multivariate Methods and Machine Learning

Comp 2 (7%)

G20.WT.NaCl ® G20.WT.NaCl ®
e G20.MUT.34A9 G20.MUT.34A9 P
e G20.MUT.143C7 = e G20.MUT.143C7 | @
® G20.MUT.116G4 e ® G20.MUg.116G4 °
e G20.MUT.206E3 ol e G20.MUT.206E3
[ J
[
S )
s o
o
o
+
[0
o
([ J
[ ° Y ©
3 .
[ J (0]
o © \
[ Y [ J
. o
: ® e ooz [ ]
° o ® °
Al
° I (] Y
() [ J
I | | l | | | | | | |
-60 -40 -20 0 20 40 -2e+08 -1e+08 0e+00 1e+08 2e+08
Comp 1 (13%) Comp 1
Cacciatore$§, et al. Knowledge discovery byaccuracy maximization. Proc Natl Acad Sci. 111(2014) 5117-22. 29

80

60

40

20

-20

40

I KODAMA

Cacciatore$§, et al. KODAMA: an R package for knowledge discoveryand data mining. Bioinformatics 33 (2016) 621-623.




Multivariate Methods and Machine Learning

I KODAMA

> library(openxlsx) R

> metdRaw <- read.xlsx('XCMS.diffreport.MultiClass.xlsx'
> metd <- t(metdRaw[,40:64])

S=r

> rownames (metd)

[1] "G20.WT.NaCl.reoel" "G20.WT.NaCl.ree2" "G20.WT.NaCl.ree3"
"G20.WT.NaCl.ree4" "G20.WT.NaCl.ree5" "G20.MUT.34A9.re01"
"G20.MUT.34A9.r002" ..

> metClass <- sapply(rownames(metd), function(x)
paste(strsplit(x, '\\.")[[1]][-4], collapse='."),
USE.NAMES=FALSE)

> metCol <- as.numeric(as.factor(metClass))

30



Multivariate Methods and Machine Learning

I KODAMA

> library(KODAMA) R

> kod.out <- KODAMA(metd, constrain=metClass)
> plot(kod.out$pp, col=metCol, pch=19, xlab="Comp 1°,
ylab="Comp 2°)

> library(mixOmics)
> pls.out <- plsda(metd, Y=metClass, ncomp=4)

31



Multivariate Methods and Machine Learning

- Classification

Comp 2

-1e+08 0e+00 1e+08 2e+08

—-2e+08

2D space
® G20.WT.NaCl -
G20.MUT.34A9 °
e G20.MUT.143C7 | ®
e G20.MUg.116G4 .
e G20.MUT.206E3
o
O
[ J
o
o
o
¢ o
o °
o
| I I [ I
~2e+08 ~1e+08 0e+00 1e+08 2e+08
Comp 1

32



Multivariate Methods and Machine Learning

- KNN: k-nearest neighbors algorithm

KNN is a classification method that takes into account the closest
neighbors to classify a new data observation

Classified as ‘

33



Multivariate Methods and Machine Learning

- KNN: k-nearest neighbors algorithm

KNN is a classification method that takes into account the closest
neighbors to classify a new data observation

Classified as ‘

34



Multivariate Methods and Machine Learning

- KNN: k-nearest neighbors algorithm

KNN is a classification method that takes into account the closest
neighbors to classify a new data observation

Advantages:
 KNN's decision boundary is highly flexible

Drawbacks:

* Slow

 KNN gives the same importance to all the variables (best performance over
already reduced data)

* Need to estimate k (overfitting)

35



Multivariate Methods and Machine Learning

- KNN: k-nearest neighbors algorithm

> library(class) R

> modKNN <- knn(train=kod.out$pp[-c(1,10),],
test=kod.out$pp[c(1,10),], cl=metClass|[-c(1,10)], k=1)

> table(metClass[c(1,10), ], modKNN)

G20.MUT.34A9 G20.WT.NaCl

G20.MUT.34A9 1 %)
G20.WT.NaCl %) 1

36



Multivariate Methods and Machine Learning

- Random Forest

U | PCA/KODAMA S KNN [
S m > . .g:.’ .J'::.°.~.;.8:.“. > /

© i S0, f“:. /}
q_) 3 X .....'. ..:.
L :

o [

- ———

v | Machine Learning -

> - > .ﬁ
"C-U" =

)

L

/\

> 80% > 100K lumens/m?

\ < 90K lumens/m? < 20km/h

RAIN RAIE RAIN RAIE 37




Multivariate Methods and Machine Learning

- Random Forest

An ensemble approach that uses
decision rules to predict a specific class

Advantages:

* Runs efficiently on large data bases

e Out of bag (OOB) estimates can be used for model validation
* Decorrelates trees (good for metabolomics)

Drawbacks:
* The more the number of trees, the more slow
* Bad predictions outside the ‘learning’ limits when used for regression

38



Multivariate Methods and Machine Learning

- Random Forest

> library(randomForest) R

> metdf <- cbind(as.data.frame(metd), metClass)
> colnames(metdf)[-ncol(metdf)] <- paste('V',
colnames(metdf)[-ncol(metdf)], sep="")

> gaml <- randomForest(metClass~., data=metdf, ntree=50)
> gaml

G20.MUT.116G4 G20.MUT.143C7 G20.MUT.206E3 G20.MUT.34A9 G20.WT.NaCl class.error

G20.MUT.116G4 5 %) %) %) (%] 0.0
G20.MUT.143C7 %) 3 %) 1 1 0.4
G20.MUT. 206E3 %) 1 3 1 %) 0.4
G20.MUT. 34A9 %) %) 2 3 %) 0.4
G20.WT.NaCl %) %) %) %) 5 0.0

39



Multivariate Methods and Machine Learning

- ROC curve

Receiver operating characteristic (ROC) curves are used to see how well your classifier

can separate positive and negative examples (specially when comparing two
classifiers) and to identify the best threshold for separating them.

1) Score>95 F 1 Method A
TP:50 FP:50
TN:O FN:O

0.75
2) Score>100F

0.5 )

True positive rate (Sensitivity)

TP:20 FP:6 ’
TN:25 FN:4 S
rb(\
3) Score > 105F 0.25 -
Best score (0.6)
FPR = FP/(FP+TN) 0 *
0 0.25 0.5 0.75 1

TPR=TP/(FN+TP)

False positive rate (1-Specificity) 40



Multivariate Methods and Machine Learning

- Overfitting

1) Use an exclusive test set for validation

Training set Test set

Both training set and test set should have the
same performance

2) Cross-validation

3) Use enough data examples

4) Remove variables/features (curse of
dimensionality!)

Garbage in — garbage out principle!

Classifier performance

Dimensionality (No. features)
41



Thank you for your attention!

Questions?

42
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BIOLOGICAL MODEL
AND METABOLOMICS

The untargeted metabolomics workflow: an overview
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Nicotine degradation Il
Citrulline biosynthesis
Lactose degradation Il

-«

Analytical process

Bioinformatics




BIOLOGICAL MODEL
AND METABOLOMICS Sample prep

d Sample prep in metabolomics involves several decision-making steps
dependent on the biological problem:

1. Selection of the biosource to be analyzed.

a) Which biosource is the most suitable to find differences in the
metabolome and provide as most as possible information?

b) If we have a cell-based system, should we analyze supernatants
in addition to cell extracts?

c) If we have a whole-organism system, is it worthwhile processing
biofluids?

2. Selection of the type of extraction. Tightly related with previous
selection.

3. Normalization of results: which parameters should we measure to
use the same amount of starting material across all samples?



BIOLOGICAL MODEL ,
AND METABOLOMICS Example I. Do we analyze supernatants in cell-based models?

Model of study Analysis of Reason
supernatants

Endocrine cells:
pancreatic cells,
enterocytes, hepatocytes,
macrophages, adipocytes,
ovary/testis cells

Skeletal muscle cell

Osteoclast

Stem cell differentiation



BIOLOGICAL MODEL P :
AND METABOLOMICS Example Il. Do we analyze biofluids in whole-organism models?

Model of study Analysis of Reason
plasma/urine

Endocrine organs/tissues:
pancreas, liver, adipose
tissue, ovaries/testis

Localized diseases: some
skin diseases, alopecia

Gut microbiome
modifications

Kidney disease

Endotoxic shock by
intraperitoneal injection
of LPS



BIOLOGICAL MODEL "
AND METABOLOMICS Sample prep. Normalization parameters

* Protein content

e Number of cells

e Tissue mass

— ¢ \/olume of biofluid




BIOLOGICAL MODEL
AND METABOLOMICS

Example lll. Choice of normalization magnitude

Norma- Alternative

lization

Cells

Cells

Tissue

Fecal
matter

Biofluids

Urine

Cell
number

Protein
content

Mass

Mass

Volume

Volume



BIOLOGICAL MODEL
AND METABOLOMICS

The untargeted metabolomics workflow: an overview

Biological model

@_)
@

Biosource Analytical process

7

/
|
< 4 (

| i

4 =

ARWRS

List of dysregulated Bioinformatics

metabolites and pathways

7-ketocholesterol

Tryptophan

Citric acid e
Nicotine degradation Il
Citrulline biosynthesis

Lactose degradation Il




BIOLOGICAL MODEL

AND METABOLOMICS XCMS processing. Selection of species

General Feature Detection Retention Time Correction ‘ Alignment ‘ Statistics Annotation ’ Identification Visualization ‘ Miscellaneous ‘

Option Value Note:

ppm 2 ‘ tolerance for database search
[M+H]+ =

[M+NH4]+

[M+Na]+

[M+H-H20]+

[M+H-2H20]+

[M+K]+

[M+ACN+H]+

[M+ACN+Na]+

[M+2Na-H]+

[[M+2H]2+ | | v

adducts adducts to be considered for database search

SELECT BIOSOURCE RESLEEUL

SELECTED: default-HUMAN
pathway ppm deviation S v
» View Advanced Options

sample biosource Select your species/cell line, etc. that correspond to your samples. Default human.

metabolite pathway lookup

Select —Q (I=

Biosource Strain

SELECT YEAST S.cerevisiae

SELECT DALA207559 D.alaskensis G20

SELEGH HUMAN H.sapiens

Drosophila

SELECT FLY
melanogaster

E.coli K-12 substr.

I
SELECT ECOL MG1655

EEEEE

Showing 1 to 5 of 7,627 entries Previous ‘ 1 ’ 2 3 4 5 1526 Next



BIOLOGICAL MODEL , , ,
XCMS processing. Selection of species

AND METABOLOMICS

Overlapping putative

Pathwa All metabolites?* -values A
y metabolites’ P

1D-myo-inositol

hexakisphosphate

CXASPROSP 2 2 17e-4

biosynthesis Il
(mammalian)

D-myo-inositol (3,4,5,6)-
tetrakisphosphate

Mus musculus (Correct biosource)

N
N

\'\"inosine-5\'\'-phosphate

o 2 2 1.7e-4
biosynthesis 1I\"\
purine and pyrimidine 4 13 5604
metabolism
Overlapping putative
Pathway PP g1p All metabolites?* p-values A
metabolites
1D-myo-inositol
hexakisphosphate
SpNosp 2 2 4.2e-4
biosynthesis V (from
Ins(1,3,4)P3)
1D-myo-inositol
hexakisphosphate
e 2 Homo sapiens
Sy
(mammalian) p
D-myo-inositol (3,4,5.6)-
tetrakisphosphate 2 2 42e-4
biosynthesis
D-myo-inositol (1,4,5.6)-
tetrakisphosphate 2 2 42e-4
biosynthesis
Overlapping putative -
Pathwa - All metabolites?* -values A
v metabolites’ P
adenosylcobalamin salvage
% m % 5 2 8.56-6
from cobinamide |
guanine and guanosine 2 3 495
Escherichia coli
\\"inosine-5\'\-phosphate sc er’C ’a CO ’
L 2 3 4.9e-5
biosynthesis I\"\'
guanosine nucleotides 5 4 2 1e-4

degradation IlI



BIOLOGICAL MODEL
AND METABOLOMICS

METLIN identification

Unknown feature Simple Search
m/z=351.2177

136 putative metabolites:

* PGE,
Mass 351.2177
5 * PGD,
» Tolerance 5 PPM i PG|2
. . .
; . — PGF,,, derivatives
Positive i PG H2
Negative . .
* Lipoxin A,
Preadipocyte Adipocyte
MS/MS Spectrum Search MS2-351.2177
100 - Precursor a5 1 |
< | = 13 matches with
o Precursor 5
g | —>» METLIN MS/MS
C Collision 206V v
s | spectra!!l
c MS/MS 0.005
-} Tolerance
Ko (Da)
m Peaks 271 90 0
) maxzo gl
> peaks) 333.2005, 495
S [ R
E Mode Positive
Negative
0 | 1 1 h 4
| 1 | | | 1 1
50 100 150 200 250 300 350

m/z




BIOLOGICAL MODEL . : : :
AND METABOLOMICS Example IV. Use biology to identify metabolites

O Since MS/MS spectra match with METLIN has multiple hits, the simplest way to
identify this molecule is to compare its retention time with the retention time
of authentic standards.

[ Purchasing 13 standards is expensive—> Use of biological information to narrow
down the candidates. l

d Relevant biological information:
1. Pre-adipocytes in differentiation to adipocytes.

2. Molecule found in supernatants only, not in cell extracts. 5700t Adipocyte

3. Bibliography. Search for the involvement of those 13 metabolites in adipocyte
differentiation:

" PGE, suppresses 3T3-L1 pre-adipocyte differentiation (Tsuboi, et al., Biochem.
Biophys. Res. Comm., 2004). PGE, blocks pre-adipocyte differentiation into
white adipocytes (Garcia-Alonso, et al., J. Biol. Chem., 2013).

" PGE, is the major AA derivative produced in multiple cell types (Dennis &
Norris, Nat. Rev. Immunol, 2015).

* PGD, (PGE, isomer) shows a very similar MS/MS spectra and elutes very close
to PGE, in reversed-phase chromatography (Dumlao, et al., BBA, 2011).
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Cytotoxicity,
proliferation and
viability
Apoptosis

Glucose uptake

Modulation of the
inflammatory
response

GPCR signaling

Autophagy

ROS

Metabolomics Activity Screening: cell-based functional assays

Measurement of number of viable cells
(trypan blue), metabolic activity (MTT) or
DNA synthesis (BrdU).

Measurement of membrane asymmetry
(annexin V) or mitochondrial degradation
(cytochrome C oxidase).

Measurement of uptake of fluorescent
glucose analogs (2-NBDG).

Measurement of NF-xB activity (NF-xB
reporter luciferase assay). Simultaneous
detection of multiple cytokines.

Measurement of intracellular calcium (FLIPR).

Measurement of autophagic vacuoles
(monodansylcadaverine).

Measurement of ROS through multiple
probes (oxidized/reduced glutathione,
catalase, superoxide anion).

Preliminary assays to
assess toxicity of
metabolites

Tumor cells, but
virtually all cell types

Adipocytes, muscle

Immune cells,
endothelial cells,
adipocytes,
fibroblasts

Virtually all cell types
Cancer cells,
degenerative diseases

Immune cells, tumor
cells, neurons
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Example I. Ruling out metabolites

Model of disease: Calorie
restriction in mice.

Plasma Both Brain
(91) (13) (25)

Objective: To return back to mj

gdulated metabolites to study their
modulating effect in caloric restriction. We

Annot buy the 103 metabolites:

1. As food supplements.

2. Through intracerebral injection.
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BIOMARKERS Example Il. Ruling out metabolites

Model of disease: Pre-adipocyte differentiation. Diacylglycerol molecules
= oooooebon
”z\/\/\/\/\/\/\/\/\(0 "
Pre-adipocytes Adipocytes

Objective: To add dysregulated metabolites to the pre-adipocytes to study their
role in cell differentiation.

1. Biology: DAG are intracellular signaling molecules, known to be activators of
several PKC isoforms, which play roles in cell differentiation (Newton, JLR., 2009).

2. Biophysics: Due to its hydrophobicity (logP>14) and the absence of transporters,
when it is added exogenously, DAG is accumulated between the two leaflets of
plasma membrane.

3. It is not worthwhile to screen the effect of these metabolites, unless:
a) Use a short-chain analogue, able to pass through the plasma membrane.

b) Derivatize the compound to let it enter the cell with groups that are
hydrolyzed once within the cell.

c) Use carriers (mixed micelles).



v' The nature of the biological system we are analyzing is essential for the
design of our metabolomics workflow and the use of our output data.
1. Sample prep.
2. Data processing.
3. Metabolite identification.

4. Functional assays.

He put the frog on the ground and told it to jump. The frog jumped.
So the scientist cut off one of the frog's legs. The scientist told the frog to jump, the frog jumped.
The scientist cut off another leg. He told the frog to jump. Frog jumped again.

The scientist cut off one more leg. He told the frog to jump. Frog jumped again.

So the scientist cut off his last leg.

He told the frog to jump, but the frog didn't. He tried again, but nothing.

So the scientist wrote in his notebook, "Frog with no feet, goes deaf."
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Metabolomics activity screening for identifying
metabolites that modulate phenotype

Carlos Guijas’*®, ] Rafael Montenegro-Burke!*®, Benedikt Warth!-24, Mary E Spilker! & Gary Siuzdak!3

Metabolomics, in which small-molecule metabolites (the
metabolome) are identified and quantified, is broadly
acknowledged to be the omics discipline that is closest

to the phenotypel-3. Although appreciated for its role in
biomarker discovery programs, metabolomics can also be

used to identify metabolites that could alter a cell’s or an
organism’s phenotype. Metabolomics activity screening

(MAS) as described here integrates metabolomics data with
metabolic pathways and systems biology information, including
proteomics and transcriptomics data, to produce a set of
endogenous metabolites that can be tested for functionality

in altering phenotypes. A growing literature reports the use of
metabolites to modulate diverse processes, such as stem cell
differentiation, oligodendrocyte maturation, insulin signaling,
T-cell survival and macrophage immune responses. This opens
up the possibility of identifying and applying metabolites

to affect phenotypes. Unlike genes or proteins, metabolites
are often readily available, which means that MAS is broadly
amenable to high-throughput screening of virtually any
biological system.

Historically, metabolites have been either supplemented or elimi-
nated from growth media and diets to modulate cellular activity and
affect phenotype. For example, in the phenylalanine hydroxylase
deficiency disease phenylketonuria, deficient metabolism of phe-
nylalanine results in severe and adverse symptoms that can only be
ameliorated by strict adherence to a low-phenylalanine diet from
birth*. A prominent example of a frequently supplemented metabo-
lite is niacin (vitamin Bs), which has an important role in energy
transfer and maintenance of metabolic activity®. Metabolites can
also function as metabolic coenzymes (e.g., coenzyme Q10 (CoQ10)
and thiamine) and modulation of coenzymes can alter phenotypes
by altering regulation of enzyme reactions. For example, statins, a
class of cholesterol-lowering drugs, have the side effect of inhibiting
the endogenous synthesis of CoQ10 (ref. 6). CoQ10 (ubiquinone) is
a commonly prescribed supplement for patients receiving statins to
regain mitochondrial energy homeostasis.

Metabolomics is used to identify the set of metabolites that are
associated with physiological conditions or aberrant processes. To
date, the main focus of the field has been on using this information

to identify biomarkers and active or dysregulated pathways. In this
Perspective, we discuss how to screen metabolomics data for metabo-
lites that can be used to either induce or suppress biological functions.
Unlike proteins, or genes, endogenous metabolites are readily ame-
nable to biological testing and clinical applications.

Metabolomics activity screening

Untargeted (global) metabolomics uses liquid chromatography
high-resolution mass spectrometry (LC-MS) to carry out compre-
hensive comparative analysis of metabolites. LC-MS is well-suited
to metabolomic analyses, because it has high sensitivity, specificity,
and reproducibility. It enables a broad statistical assessment of the
metabolites extracted from a sample, and can be used to reveal unan-
ticipated metabolic perturbations. There are numerous commercial
and freely available data-processing packages, such as XCMS Online’,
Mzmine®, and MetaboAnalyst?, that can be applied to analyze LC-MS
data. These suites of algorithms can identify chromatographic peaks,
align them, and then statistically assess the comparative data, based
on calculated probability, fold change, and intensity. Metabolites
that are differentially regulated can be identified using databases
(e.g., METLIN (https://metlin.scripps.edu), the human metabolome
database (HMDB; http://www.hmdb.ca), and LIPID MAPS; http://
www.lipidmaps.org/)10-12, whose features and limitations have been
reviewed!®. The main advantage of untargeted LC-MS metabolomics
is that it is an unbiased way to identify metabolites associated with
a particular condition, whether it is stem-cell differentiation!%1>,
immune-cell activation!®-1%, remyelination in multiple sclerosis??,
chronic pain?!, or type 2 diabetes?>23, to name but a few of the hun-
dreds of examples that have been reported.

Endogenous metabolites identified in metabolomics data sets can
be screened to identify metabolites that modulate phenotype. Unlike
genes and proteins, metabolites are readily available, typically inex-
pensive, and have relatively simple structural features making them
very amenable to screening.

Various MAS workflows can be designed to identify metabolites
from metabolomics experiments for activity testing (Fig. 1). The
most straightforward approach selects metabolites based on statisti-
cal significance and fold change, which is also the standard method
for screening metabolites in global metabolomics experiments. For
example, in a comparative analysis using a cell model, any metabolites

1The Scripps Research Institute, Scripps Center for Metabolomics and Mass Spectrometry, La Jolla, California, USA. 2University of Vienna, Department of Food
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that have statistical significance represented by a P-value lower than
0.001, and fold changes greater than two, would qualify for further
testing, although these values are user-defined and can vary. A sec-
ondary level of candidate selection would be to test metabolites from
pathways identified as being active, a feature that has been recently
automated in XCMS Online?*. This ‘biologically driven’ selection
method would include metabolites identified as dysregulated and
metabolites involved in pathways of interest. Metabolites can be plot-
ted onto pathway maps and ranked on the basis of the number of
pathways involving each metabolite, leveraging pathway specificity.
A third level of candidate selection can be mediated by manipulating
the activity of enzymes in pathways using inhibitors or molecular
biology approaches.

An important part of metabolite selection, beyond evaluating sta-
tistical significance, fold change, and pathways, is metabolite identi-
fication. For this purpose, multiple databases have been created that
allow metabolites to be putatively identified using accurate mass and
tandem mass spectrometry datal®. Metabolite identification is vali-
dated by comparison with an authentic standard with tandem MS data
generation as well as chromatography retention time (when available).
Further validation in which experimental samples are analyzed using
a targeted approach with triple quadrupole MS to compare against
the original quantification (performed in the untargeted experiments)
can also be used. These multiple levels of authentication help mini-
mize misidentifications, which commonly occurred in the past when
only precursor m/z values were used.

It is worth noting that while databases for initial identification
information are not complete, their growth has been tremendous in
the last decade. Currently, users examine multiple databases when
performing searches because the databases are not completely over-

lapping?>.

Phenotype-modulating metabolites identified using MAS
Metabolomics has been applied to provide insights into immu-
nomodulation!6-1%, cardiovascular disease?6-28, and diabetes?23,
with specific examples from our group, including stem cell differen-
tiation (G.S. and colleagues)!4, the role of microbiome metabolism
(G.S. and colleagues)?®, molecular origins of chronic pain (G.S. and
colleagues)?!, and, most recently, remyelination for neuron repair
(JR.M.-B., G.S, and colleagues)zo. Comparatively, though, little effort
has been dedicated to examining the activity of these biomarkers. In
the following paragraphs, we briefly outline five examples of biologi-
cally active metabolites as unraveled by MAS.

Modulating stem cell differentiation. One of our (G.S. and col-
leagues)!430 earliest efforts in stem cell analysis was designed to
identify metabolites associated with cell differentiation. In these
experiments, the metabolome of pluripotent stem cells, differentiated
neurons and cardiomyocytes were quantitatively compared. Globally,
the differentially regulated metabolites indicated that oxidation was
a primary driver for cell differentiation. For example, arachidonic
acid, a polyunsaturated fatty acid and the metabolic precursor to
>100 functionally diverse metabolites, is highly upregulated in stem
cells. Arachidonic acid in stem cells is important for maintaining
‘chemical plasticity’ and in mediating differentiation by regulation of
redox status and activation of oxidative pathways. A crucial down-
stream molecule in these experiments, protectin D1 (derived from
docosahexaenoic acid, also a polyunsaturated fatty acid) was used to
promote differentiation and neurogenesis at concentrations as low
as 50 nM (Fig. 2a).
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Figure 1 MAS for the identification of endogenous metabolites that
modulate phenotype. Metabolomics data analysis and identification of
candidates for screening are carried out by XCMS Online or other data-
processing approaches. Initial candidates are generated using statistical
and fold-change cut-offs and can then be further investigated using high-
throughput screening to identify biologically active metabolites. Pathway
analysis can provide additional metabolite candidates, while a third level
of screening would identify candidates following perturbations with known
pathway inhibitors.

Opverall, the results from these experiments suggested that the activa-
tion of oxidation is a metabolic requirement of stem-cell differentiation.
Specifically, endogenous metabolites that promote pluripotency induce
stem cells to a more reduced state whereas those that promote differ-
entiation induce a more oxidized state. Moreover, it is well known that
hypoxia maintains the pluripotent and undifferentiated phenotype of
stem or precursor cells both, in vitro and in vivo®!. Interestingly, these
results also showed that endogenous metabolites are not merely sub-
strates and products of metabolic reactions, but rather are involved in
modulating stem cell differentiation and can be used to enhance their
regenerative potential.

Modulating type 2 diabetes. Branched fatty acid esters of hydroxy
fatty acids (FAHFAs) were discovered as dysregulated metabolites
in mice protected against diabetes and further used to modulate the
type 2 diabetes phenotype?2. A class of uncharacterized endogenous
metabolites were found to be highly upregulated in the adipose tissue
and plasma of mice overexpressing the glucose transporter Glut4 com-
pared to their wild-type littermates, in an untargeted metabolomics
study. Even though the m/z of these compounds did not correspond to
any known metabolite in METLIN and LIPID MAPS, its structure was
characterized as FAHFA using fragmentation spectra in negative-ion
mode. Glut4-overexpressing transgenic mice have an elevated lipogen-
esis and glucose tolerance, despite being obese, with elevated levels of
circulating fatty acids. Hence, it was hypothesized that FAHFAs could
affect glucose and insulin homeostasis. Once chemically character-
ized and synthesized, palmitic acid 9-hydroxystearic acid (9-PAHSA),
one of the most abundant FAHFAs, was tested in an in vivo model
of type 2 diabetes. Diabetic mice fed a high-fat diet, that were orally
administered 9-PAHSA, showed an overall higher glucose tolerance
and insulin sensitivity compared with controls (Fig. 2b). Moreover,
in adipocytes, the improvement in glucose metabolism resulted from
9-PAHSA-triggered binding and activation of the GPR120 receptor,
a well-known anti-inflammatory and insulin-sensitizing mediator in
response to omega-3 fatty acids.

Because type 2 diabetes is accompanied by a low-grade inflam-
mation in adipose tissue that may contribute to the insulin-resistant
state, 9-PAHSA was further tested as a possible immunomodulator
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of the adipose-tissue-associated inflammatory response. Mice orally
supplemented with 9-PAHSA showed an effective reduction in the
in vivo inflammatory response of adipose tissue macrophages to a
high-fat diet. In summary, 9-PAHSA was discovered and tested as
a possible phenotype modulator. When exogenously administered,
9-PAHSA increased insulin sensitivity and glucose tolerance in a
mouse model of type 2 diabetes?2.

Modulating T-cell survival and anti-tumor activity. Metabolic mod-
ulation through L-arginine prompted a central memory-like T-cell
phenotype with enhanced survival capacity and anti-tumor activity
both in vitro (human) and in vivo (mouse model)!®. In that study,
untargeted flow injection metabolomics analyses3? were performed
to determine the dynamic changes in arginine metabolism during a
time-course experiment. Results were validated by monitoring cell
uptake of isotopically labeled L-arginine to determine its fate/flux as
well as enzyme inhibitors and clones.

These observations were then further explored to demonstrate
that higher L-arginine levels induced structural alterations in three
transcriptional regulators (BAZ1B, PSIP1, and TSN) and modulated
T-cell metabolic fitness’ and survival (Fig. 2c).

Modulating innate immune response. Correct regulation of the innate
immune response is a key factor in the maintenance of whole-body
homeostasis. Dysregulation of the immune response may underpin sev-
eral illnesses related to an excessive or chronic activation or immunosup-
pression. Relevant to this, the uncommon phosphatidylinositol species
1,2-diarachidonyl-glycero-3-phosphoinositol (P1(20:4/20:4)) was found
to be upregulated in mouse-resident peritoneal macrophages stimulated
with the yeast cell wall preparation zymosan, a classic stimulus of the
innate immune response!®. This lipid species, previously characterized
using the LIPID MAPS database, is rapidly formed and degraded upon
stimulation, suggesting a role in regulating cell signaling events, such
as generation of reactive oxygen species and secretion of lysozyme, two
pivotal molecules produced by macrophages for pathogen killing. When
added exogenously, macrophages incorporate this molecule into their
phospholipid pool and show a higher superoxide anion production
and lysozyme secretion than control cells and macrophages enriched
with a scrambled phosphatidylinositol species (Fig. 2d), suggesting
this molecule plays a key role in the coordination of the macrophage
response to zymosan.

Modulating oligodendrocyte maturation. We (JR.M.-B., G.S., and col-
laborators)?? have also used MAS to analyze oligodendrocyte precursor
cell (OPC) differentiation in multiple sclerosis, an autoimmune disease
characterized by demyelination of axons and neuronal dysfunction.
Disease remission in multiple sclerosis is dependent on remyelination,
which involves the differentiation of OPCs and leads to the formation
of mature oligodendrocytes33. Premyelinating oligodendrocytes are
present in chronic lesions of patients and inhibition of OPC differentia-
tion is associated with multiple sclerosis disease progression. Therefore,
a promising complementary treatment of multiple sclerosis involves the
identification of pharmacological agents that stimulate remyelination
by enhancing OPC differentiation. Multiple drug candidates have been
identified using high-throughput screening, which induce OPC dif-
ferentiation in vitro and enhance remyelination in vivo.

We used MS-based metabolomics to investigate how endogenous
metabolites play a role in the process of OPC differentiation?’. Among
other related metabolites, taurine, an amino sulfonic acid, was found
to be significantly elevated (~20-fold) over the course of in vitro oli-
godendrocyte differentiation (Fig. 2e). When added exogenously at
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Figure 2 MAS demonstrated in stem-cell differentiation, a mouse model
of type 2 diabetes, T-cell function and activity, macrophage response

to a fungal stimulus, and a remyelination model for multiple sclerosis.
(a) Experiments with embryonic stem cells identified the metabolites
involved in their differentiation. Among them, protectin D1, a lipid,

was found to enhance differentiation to neurons by a factor of 15

(ref. 14). (b) 9-PAHSA was discovered in adipose tissue and plasma

of glucose-tolerant mice. This metabolite was identified as a key
molecule that maintains correct glucose homeostasis in a model of

type 2 diabetes induced by a high-fat diet?2. (c) L-arginine levels
decreased in activated naive T-cells. When L-arginine levels were

raised externally, this amino acid actively increased survival and
anti-tumor activity of T cells by modulating the activity of several
transcriptional factors!9. (d) Minor phospholipid species P1(20:4/20:4) is
actively synthesized by activated macrophages. When exogenously added,
this lipid amplified microbicidal capacity of macrophages in response to
the fungal stimulus zymosanl®. (e) Taurine, that was

observed to be highly upregulated during OPC differentiation, enhanced
the effect of a novel drug treatment (miconazole) to induce OPC
differentiation into mature oligodendrocytes, a promising cell target for
multiple sclerosis treatment20,

physiologically relevant concentrations, taurine not only enhanced
drug-induced OPC differentiation but also facilitated the in vitro
myelination of co-cultured axons. Unlike in L-arginine T-cell modu-
lation, and overturning the common assumption that upregulated
metabolites are end-point biomarkers, the addition of upregulated
taurine had a positive effect, further stimulating remyelination during
OPC differentiation. Mechanistically, taurine-induced activities that
enhance OPC differentiation and myelination appear to be driven by
taurine’s ability to increase serine levels, which is an initial building
block required for the synthesis of the glycosphingolipid components
of myelin.
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In the past, several metabolites have been discovered as effective
phenotype modulators, using approaches other than MAS, including
cellular fractioning, ligand-binding assays, and enzymatic assays.
Examples include sphingosine-1-phosphate (immunomodulation)3®,
docosahexaenoic acid (cognitive function)3S, carnitine (fertility)37,
anandamide (neurological disorders)3, and melatonin (sleep)3?, to
name a few. However, the use of metabolomics data to character-
ize dysregulated metabolites of interest is gaining more attention
because this approach is able to detect a wide range of small mol-
ecules at low concentrations, increasing throughput. Thus, metab-
olomics has been successful in identifying active metabolites for
phenotype modulation (Table 1). It is clear that metabolomics can
enable identification of molecules with interesting and potentially
beneficial functions.

Notwithstanding MAS’s clear utility, challenges exist that could
impede the broad its implementation. It is unclear how to accurately
identify either the best candidate molecules for further testing or
which molecule among the numerous other dysregulated metabolites
is likely to be the most effective phenotype modulator. Statistical
analyses, metabolite classification schemes based on prior metabolite
activity knowledge, and pathway redundancy have all been used to pri-
oritize the best candidates and reduce the need for large-scale biologi-
cal validation experiments. Follow-up experiments including the use
of pathway metabolites, pathway inhibitors and stable isotope labeling
as well as flux analysis are valid strategies to further reduce the list of
candidate metabolites. Another challenge for untargeted metabolomics

Table 1 Metabolomics activity screening examples

PERSPECTIVE

studies is the identification of ‘unknown’ molecules. This is attrib-
uted to the chemical diversity and heterogeneity of the metabo-
lome, and substantial effort has been dedicated to the development
of advanced computational tools for tandem MS prediction and
metabolite characterization. Although thousands of metabo-
lites are commercially available, a limiting aspect of MAS can be
the lack of commercially available reference materials for activity
validation, particularly for lesser known or characterized metabo-
lites. In those cases, the potential solutions available at present
involve synthetic or isolation strategies, and for the most part, the
former is the more common approach because large amounts of sam-
ple are rarely available to undertake isolation attempts*0.

Discovery metabolomics has largely been used to identify biomark-
ers and characterize mechanisms of biological action. Going forward,
the use of MAS to identify biologically active endogenous metabolites
that can be used to intentionally alter phenotype might prove to be a
far more effective application of metabolomics. Metabolites identi-
fied using MAS can be used to induce a phenotypic response alone,
or in conjunction with a drug. MAS might conceivably permit dose
or side effect reduction while maintaining or even improving thera-
peutic outcomes.

Applications of MAS could be expanded to disease modulation,
biofilm initiation or suppression, drug-exposome interactions, plant
biology and immunotherapy. Perhaps what is most intriguing is that
rather than identifying metabolites to understand pathways, we can
apply metabolites to modulate physiology, thereby turning the tables
on conventional thinking.

Metaholite System Original observation Induced phenotype Reference
Protectin D1 Stem cell differentiation Polyunsaturated fatty acid Promotes differentiation into neurons 14
precursors decrease during
differentiation
cis-9,10-octadecenoamide Sleep induction Accumulated in cerebrospinal Induces sleep 41
(oleamide) fluid of sleep-deprived felines
Trimethylamine N-oxide Cardiovascular disease Augmented in plasma of subjects Increases scavenger receptors expression, 27,28
with cardiovascular risk foam cell formation and atherosclerotic
lesions
N, N-dimethylsphingosine Chronic pain Increased in a rat model of Elicits neuropathic pain behavior and 21
chronic neuropathic pain cytokine release
P1(20:4/20:4) Pathogen killing Upregulated in zymosan- Increases superoxide anion production 16
stimulated macrophages and lysozyme release
3-carboxy-4-methyl-5-propyl- Gestational and type 2 diabetes Elevated in plasma in human Impairs glucose tolerance and B-cell 23
2-furanpropanoic acid and mice models of gestational function
diabetes and type 2 diabetes
9-PAHSA Type 2 diabetes Increased in plasma and adipose Improves glucose metabolism and insulin 22
tissue of diabetes-protected mice. sensitivity
Decreased in diabetic humans
S-adenosyl methionine Stem cell differentiation Downregulated in naive Induces differentiation to primed stem 15
embryonic stem cells cells
cis-7-hexadecenoic acid Cardiovascular disease Elevated in atherosclerosis- Decreases inflammatory response to 17
(16:1n-9) initiating foamy monocytes and bacterial lipopolysaccharide in monocytes
macrophages and macrophages
Dioxolane A3 Acute inflammation Increased in thrombin-activated ~ Promotes neutrophil recruitment and 18
platelets activation
Proline, isoleucine, and Synthetic mutualism Secreted by Zymomonas mobilis  Results in rescue and growth of 42
phenylalanine Escherichia coli auxotrophs in
co-culture with Z. mobilis
L-arginine Adaptive immune response Decreased in activated naive T Induces differentiation into memory-like 19
cells cell, increases survival and anti-tumor
activity
Taurine Multiple sclerosis Upregulated during oligodendro-  Enhances oligodendrocyte differentiation 20

cyte precursor cell differentiation

and myelination
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Untargeted metabolomics aims to measure
the broadest range of metabolites present
in an extracted sample without a priori
knowledge of the metabolome. The

types of metabolites that are recovered
are influenced by the extraction and
analytical method of choice, but they
result in a complex data set that requires
computational tools to identify and
correlate metabolites between samples
and to examine their interconnectivity

in metabolic pathways in relation to the
phenotype or aberrant process (see BOX 2
and Supplementary information S1 (box)).
By contrast, targeted metabolomics
provides higher sensitivity and selectivity
than untargeted metabolomics, but
metabolites are analysed on the basis of

INNOVATION

Metabolomics: beyond biomarkers
and towards mechanisms

Caroline H. Johnson, Julijana Ivanisevic and Gary Siuzdak

Abstract | Metabolomics, which is the profiling of metabolites in biofluids, cells and
tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative
developments in informatics and analytical technologies, and the integration of
orthogonal biological approaches, it is now possible to expand metabolomic
analyses to understand the systems-level effects of metabolites. Moreover, because
of the inherent sensitivity of metabolomics, subtle alterations in biological
pathways can be detected to provide insight into the mechanisms that underlie

various physiological conditions and aberrant processes, including diseases.

Metabolites are the substrates and products
of metabolism that drive essential cellular
functions, such as energy production and
storage, signal transduction and apoptosis.
In addition to being produced directly by the
host organism, metabolites can derive from
microorganisms, as well as from xenobiotic,
dietary and other exogenous sources'.

The biochemical actions of metabolites
are far-reaching. To start, metabolites can
regulate epigenetic mechanisms and
maintain the pluripotency of embryonic
stem cells (ES cells)>. It has also been
well established that metabolites such as
ATP, acetyl-CoA, NAD*, and S-adenosyl
methionine (SAM) can function as
co-substrates, regulating post-translational
modifications that affect protein activity”*.
In addition, fatty acids and hormones can
interact with plasma proteins to enable
their transport in the bloodstream”".
Furthermore, metabolite—protein
interactions can aid in facilitating cellular
responses by initiating signalling cascades,
thus evidencing the role of metabolites in
signal transduction''?,

Indirectly, metabolites affect the
environment in which they are produced.
Under normal conditions, homeostatic
controls exist to counteract any adverse
biological consequences of such effects.
For example, acidic metabolites decrease the
pH of the microenvironment'**, and high
concentrations of these acidic metabolites

are found, for instance, in the colon,

owing to bacterial fermentation of dietary
carbohydrates that leads to the production
of short-chain fatty acids. These are,
however, efficiently neutralized by mucosal
production of bicarbonate. Notably, such
homeostatic controls can be compromised
with age and during disease, leading to
functional decline and a failure to return

to steady state. In addition, the adaptation
of aberrant glycolytic cancer cells to the
large amounts of lactate and protons that
they produce occurs through modification
of the activity of transporters, exchangers,
pumps and carbonic anhydrases, which

all help to maintain the intracellular pH
and enable cells to survive the acidic
microenvironment®. Thus, as metabolites
can have a wide range of functions in

the cell and organism, there is growing
motivation to better ascertain their specific
functions, as well as to understand their
physiological roles. This can be done

by implementing various metabolomic
approaches to identify metabolites and
metabolic pathways that are associated with
particular phenotypes, and then integrating
this knowledge with functional and
mechanistic biological studies.

The main methodologies that are used
for metabolite recovery and identification
are untargeted (global) and targeted mass
spectrometry-based metabolomics, which
are discussed in more detail in BOX 1.

a priori information, whereby methods
are developed and optimized for the
analysis of specific metabolites and
metabolic pathways of interest. Targeted
analysis also constitutes an important
part of a metabolomics workflow to
validate and expand upon results from
untargeted analysis'®.

The types of samples that can be
analysed using metabolomics are
wide-ranging and include tissues, cells and
biofluids. Tissue analysis, in particular, is
perhaps the most powerful approach for
studying localized and specific responses
to stimuli and pathogenesis, yielding
explicit biochemical information about
the mechanisms of disease. Traditionally,
tissue analysis involves extraction of the
complete tissue material into a liquid form,
from which the metabolite changes are
averaged across the different cell types and
regions of the analysed organ. In addition
to this total tissue analysis, subregional,
cellular and even subcellular metabolite
profiles can provide further insight into
structure-to-function relationships;
this is particularly valuable in the case
of heterogeneous tissues such as brain
and cancers”. Simultaneous sampling of
arterial blood (entering the organ) and
venous blood (draining the organ), followed
by paired analysis, can also have value in the
investigation of tissue metabolic activity'.
This paired arteriovenous approach
provides information about the metabolite
uptake and release patterns across the

NATURE REVIEWS | MOLECULAR CELL BIOLOGY

© 2016 Macmillan Publishers Limited. All rights reserved.

ADVANCE ONLINE PUBLICATION | 1


http://www.nature.com/nrm/journal/vaop/ncurrent/full/nrm.2016.25.html#supplementary-information

PERSPECTIVES

Box 1| Mass spectrometry in metabolomics

Mass spectrometry

Mass spectrometry is an excellent analytical platform for metabolomic analysis, as it provides high
sensitivity, reproducibility and versatility. It measures the masses of molecules and their fragments to
determine their identity. This information is gained by measuring the mass-to-charge ratio (m/z) of
ions that are formed by inducing the loss or gain of a charge from a neutral species. The sample,
comprising a complex mixture of metabolites, can be introduced into the mass spectrometer either
directly or preceded by a separation approach (using liquid chromatography or gas chromatography).
Direct injection has been successfully implemented for high-throughput metabolomics. However, as
thousands of ions can be present in metabolomic experiments, chromatographic separation before
entering the mass spectrometer minimizes signal suppression and allows for greater sensitivity, and
— by providing a retention time identifier — it can further aid metabolite identification. In addition
to m/z and retention time information, the identification of an ion is facilitated by fragmentation
pattern information that is acquired by tandem mass spectrometry®.

Untargeted metabolomics

Untargeted or global metabolomic analysis allows for an assessment of the metabolites extracted
from a sample and can reveal novel and unanticipated perturbations. Untargeted analyses are most
effective when implemented in a high-resolution mass spectrometer, to facilitate structural
characterization of the metabolites. Its primary advantage is that it offers an unbiased means to
examine the relationship between interconnected metabolites from multiple pathways. However, it
is not yet possible to obtain all metabolite classes simultaneously, as many factors affect metabolite
recovery, depending on the functional group of the metabolite. In addition, there are a large number
of unknown metabolites that remain unannotated in metabolite databases*. Thus, depending on the
pH, solvent, column chemistry and ionization technique used, untargeted metabolomics can provide
a detailed assessment of the metabolites in a sample, revealing a wide range of metabolite classes.

Targeted metabolomics

Targeted metabolomic analyses measure the concentrations of a predefined set of metabolites.

A standard curve for a concentration range of the metabolite of interest is prepared, so that accurate
quantification can be gained. This type of analysis can be used to obtain exact concentrations of
metabolites identified by untargeted metabolomics, providing analytical validation.

Imaging metabolomics

Itis also possible to reveal the localization of selected metabolites within a tissue sample using
imaging mass spectrometry techniques, such as matrix-assisted laser desorption ionization
(MALDI)®, nanostructure-imaging mass spectrometry (NIMS)°%, desorption electrospray
ionization mass spectrometry (DESI)®*® and secondary ion mass spectrometry (SIMS)¥’,

among others. NIMS and DESI are especially suited to the analysis of small molecules.

tissue of interest and therefore gives insight
into tissue metabostasis. The power of this
paired analysis allows for the measurement
of metabolite arteriovenous differences or
ratios and offers a compelling compromise
with sampling effort, compared to

the traditional approach of venous

blood analysis.

During the past few years, substantial
progress has been made in metabolomic
analysis by improving instrument
performance, experimental design and
sample preparation, ultimately facilitating
broader analytical capabilities. Moreover,
the surge in new chemoinformatic
(computational approaches for handling
chemical information) and bioinformatic
(computational approaches for handling
biological information) tools has provided
extensive support for data acquisition,
analysis and integration. This has greatly
enhanced our ability to identify metabolites
in various samples and allowed us to
correlate these metabolites with particular

phenotypes, thus establishing useful
biomarkers that are indicative of particular
physiological states or aberrations. The
ultimate challenge now is to move beyond
simply identifying metabolites and

using them as biomarkers, and to start
establishing the direct physiological roles
of metabolites and their involvement in
metabolic networks, as well as determining
how changes in their levels are implicated
in different phenotypic outcomes. This
Innovation article focuses on how this most
relevant hurdle for metabolomics can be
overcome. We describe how advances in
technologies that are used in metabolite
identification and analysis, experimental
design and pathway mapping are helping
us to gain more meaningful data, revealing
important nodes for further investigation.
We also discuss how this information,
when combined with traditional biological
methods, can enable us to ascertain
molecular mechanisms and begin to infer
biological causality.

Current challenges in metabolomics
During the past few years, metabolomics has
evolved considerably to overcome challenges
that initially confounded analysis'®. A major
challenge still exists for the identification of
metabolites and validation of metabolites

in human populations. However, the

most important challenge is to develop
workflows for assigning biological meaning
to metabolites and to move towards finding
mechanisms of disease.

Metabolite identification and validation.
The initial focus of metabolomics has

been on biomarker discovery, with the

aim of identifying metabolites that are
correlated with various diseases and
environmental exposures. This has, for
example, led to the identification of plasma
trimethylamine N-oxide (TMAO) and
urinary taurine as markers of cardiovascular
disease (CVD)" and ionizing radiation
exposure” 2, respectively. In order to
correlate metabolites with a phenotype,

the two biggest hurdles faced are metabolite
identification and biomarker validation.

In any given untargeted metabolomics
experiment, only a subset of all metabolite
features present can be positively identified.
This has been facilitated by novel in silico
tools?** (see below, as well as BOX 2 and
Supplementary information S1 (box)), the
expansion and development of metabolite
databases® (see BOX 2 and Supplementary
information S1 (box)) and the synthesis of
previously unattainable standard compounds
that can confirm the identification of the
metabolite (these standards are either novel
compounds or were previously not available
in an isotope-labelled form)?.

Biomarker validation can be challenging,
owing to difficulties in measuring subtle
differences in metabolite concentrations
between control and aberrant conditions,
and because of the lack of follow-up with
targeted metabolomic experiments (BOX 1).
These follow-up experiments should be
carried out in an additional cohort of
biological samples for validation of the
metabolite changes with the phenotype.
Moreover, one of the largest challenges to
biomarker validation is overcoming inter-
individual metabolite variation, which
arises owing to differences in genetic factors
and environmental exposures. All of these
influences result in significantly different
metabolic responses in population studies’,
making it extremely difficult to pinpoint
metabolites that are correlated with a
particular condition and, ultimately, to
provide clinical biomarkers. This is the case
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especially when examining a multifaceted
disease such as cancer. There are a number of
methods that can be applied before and after
analysis to overcome some of the biological
variation associated with human studies.
Establishing appropriate experimental design
and statistical power for the study, and using
patient questionnaires with subsequent
population stratification, as well as regression
modelling, can allow for the extraction

of important metabolites®. These types of
approaches can remove confounding samples
from the analysis and help to streamline

the data to identify metabolites that are
correlated with the biological stimulus and
not another influence. In addition, using
appropriate metabolite normalization
strategies, such as analysing metabolite ratios
or normalizing to creatinine in urine studies,
may help. Developing databases to collect
data on the normal fluctuations in metabolite
concentration ranges that occur in response
to factors such as diet”, age, gender, circadian
rhythm and exercise, which are frequent
causes of sample-to-sample variability,

would also be useful. Indeed, some databases
that contain information on specific
metabolite concentration ranges in human
biofluids and in dietary components — the
Human Metabolome Database (HMDB)*
and FooDB, respectively — have already
been developed.

Functional analysis of metabolites. Perhaps
the largest challenge that metabolomic
researchers face in any study is relating the
identified metabolites to their biological
roles, which is a necessary step for

moving beyond biomarkers and towards
mechanisms. Biomarkers obtained from
human population studies can provide a
starting point for finding links between
diseases and metabolic pathways®', and
further mechanistic work can be carried
out using in vitro and animal-based studies,
as previously shown™. Furthermore,
patient-derived primary cell lines and
xenografts can provide more reliable models
for finding relatable data, as such samples
make it possible to control for genetic and
environmental influences.

However, to evaluate the biological roles
of one or several metabolites (a metabolic
signature), one first has to determine
their functions in metabolic pathways and
their interconnectivity, and, more broadly,
determine which metabolic pathways are
perturbed by the aberrant condition®.
Only such a multi-level analysis can
provide a comprehensive understanding
of the systemic biological changes that

are associated with particular metabolites
and potentially direct further mechanistic
studies. Determining the interactions

of metabolites in metabolic pathways

is particularly challenging. Metabolic
pathway maps currently include ~2,000
metabolites; however, similar to metabolite
databases, they are somewhat incomplete,
as some metabolites have not yet been
characterized®**. Novel molecules are
regularly being discovered, adding to the
pool of known metabolites?>*. Multi-layered
approaches that integrate metabolomic and
other ‘omics’ data (see below) acquired from
the same samples provide an opportunity

to investigate the system-wide changes in a
disease and to delve further into metabolic
pathway interactions and the mechanisms
of disease development and progression®”*.

PERSPECTIVES

In addition, novel experimental approaches,
such as stable isotope-assisted analysis

(see below), can trace metabolite utilization
in pathways in a temporal manner.

Recent technical advancements
Developments in innovative informatics
strategies have been a major driver in
overcoming some of the challenges presented
with metabolomic analysis*. Advances

in data processing, statistical analysis and
metabolite characterization have enabled
the identification of more metabolites that
are associated with a particular phenotype
than was ever previously achievable. Moving
towards mechanistic investigations, novel
metabolic pathway analysis tools that assess
the interconnectivity of these metabolites
can provide important insights, particularly

Box 2 | Computational tools in metabolomics

Metabolomic analyses, and untargeted metabolomics in particular, result in the generation of
complex data sets; therefore, computational tools are crucial to process and interpret these results.
The problems associated with big data processing, statistical analyses, metabolite identification and
biological interpretation are not trivial, but there are now some novel tools available that accelerate
and automate the computational workflows, providing user-friendly tools for both novice and
expert bioinformaticians (for further details, refer to Supplementary information S1 (box)).

Data processing and statistical analysis

After data upload, mass spectral peaks are picked, realigned and annotated. The data is
deconvoluted using computational tools to remove instrumental and chemical noise, thus
providing only the biologically relevant information.

The types of statistical analyses that can be implemented for metabolomics data are vast, and
choosing the correct test can be challenging. Online tools such as XCMS Online*, DeviumWeb
MetaboAnalyst* and many others give researchers the ability to carry out a wealth of tests. Some
of the most recent advances are tools that provide false discovery rate measurements to ensure
that the data have statistical power. Other concepts that are especially useful for finding
biologically relevant metabolites are multi-group and meta-analyses, which can reveal shared
metabolic changes across multiple experiments®.

Metabolite identification and databases

Initial putative metabolite identifications can be made on the basis of the accurate mass-to-charge
ratio (m/z) of the mass spectral ion. This is aided by the use of comprehensive metabolite databases
such as METLIN®, HMDB?®, MassBank®* and GMD?*2, Tandem mass spectrometry experiments can
then be carried out on the isolated ion, followed by matching with an authentic standard, in order
to obtain characteristic fragments and retention time information to distinguish the ion from
structural isomers. In silico prediction tools provide further insight into metabolite identification
when a particular m/z or tandem mass spectrometry fragmentation pattern does not provide a
match?*%3. A recent innovation in ion mobility mass spectrometry, the rotationally averaged
cross-collisional section (CCS), provides another level of metabolite identification, and databases
containing CCS information are currently in the early stages of development®. Despite all of these
innovations, some metabolite features cannot be assigned to a molecular structure. It is therefore
important that they are published (databases for these have already been set up on METLIN) to aid
in their future identification and correlation to phenotypes.

Biological interpretation

Network modelling and pathway-mapping tools can help us to understand the parts that
metabolites play in relation to each other and in biological aberrations. Thereafter, metabolites can
be placed into context with upstream genes and proteins to lead mechanistic investigations*’.

As well as the established and comprehensive metabolic network resources Kegg®,

Recon1 (REF. 34) and Biocyc®, there are several recently developed programs that use novel
methods to find pathway connectivity, as well as aiding in metabolite identification. These include
mummichog* and metabolite set enrichment analysis (MSEA)’. In addition, stable isotope
metabolomics®***” and omics-scale big data integration can reveal interconnectivity between
metabolites and their relationships with genes and proteins (see also main text).
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Figure 1| From metabolites to pathways and mechanisms. The workflow outlines a holistic approach
that begins with high-throughput untargeted metabolite profiling. Analysis of biofluids, cells or tissues
reveals quantitative metabolite changes (as a result of a stimulus) that can be validated further.
Metabolites can be mapped and analysed within metabolic pathways to relate the metabolites to each
other, and within interconnected biological pathways, providing potential targets for further mechanistic
studies. The combination of metabolomic, orthogonal biological analysis and isotope-assisted
deciphering of pathways allows the mechanism of the aberrant phenotype to be ascertained.

when paired with advanced metabolomic
techniques such as stable isotope tracing
and integration with other orthogonal data
sets, ultimately providing systems-level
analyses (FIG. 1).

Informatics. The development of
computational and chemoinformatic tools
for metabolomics can effectively support
experimental data upload, processing,
statistical analyses and metabolite
identification, and, when used in conjunction
with bioinformatic tools, can place
metabolites into biological context (see BOX 2
and Supplementary information S1 (box)).
Metabolomic data sets obtained by mass
spectrometry (BOX 1) contain information

on thousands of ions that are generated

in the mass spectrometer from each

sample, in which the ions represent the
precursor intact metabolite or its fragments,
adducts or isotopes. Computational

tools are thus essential for reducing the
redundancy in these complex data sets

and facilitating identification of the most
relevant metabolites.

For researchers in the field of
metabolomics, computational resources are
growing at a rapid rate, and many of these
have been discussed in detail elsewhere®>*.
However, metabolomic analysis remains a
time-consuming process, and metabolite
identification is still a limiting factor.
Therefore, computational workflows
that significantly speed up the process of
data upload and data mining, with novel
methods for automated or in silico metabolite
identification and biological interpretation,
are needed. Such automated computational
workflows — allowing data streaming from
the instrument to the software, automated
qualitative and quantitative metabolite
characterization, calculation of fold change
and statistical significance, and, importantly,
metabolite pathway analysis — have recently

been developed (for more detail, see
Supplementary information S1 (box)).

As metabolomics is highly
interdisciplinary, and not all laboratories
have personnel that are specialized in
all areas of the experimental workflow,
it is often the case that some of these
computational tools are out of reach
for those not specialized in informatic
approaches or new to the metabolomics
field. Fortunately, this is beginning to change,
with several resources provided through
the US National Institutes of Health (NIH)
Common Fund Metabolomics Program.
This programme funds six regional
comprehensive metabolomic resource cores,
a data repository and a coordination centre,
to enable hands-on and online training in
arange of areas, including data processing
and interpretation. Another initiative, the
Coordination of Standards in Metabolomics
(COSMOS), is also helping to promote
the standardization of metabolomics, by
providing both experimental and data
sharing, thus aiding new researchers in the
field* (see Supplementary information S1
(box)). There are several tools, including the
workflows mentioned, that are user-friendly
but have advanced parameters for expert
users, thus providing a resource for all levels
of expertise*"*2. Some of these are available
as part of the mass spectrometry vendor
software, whereas other tools are provided
as open-access software that can be utilized
from data upload through to the metabolite
pathway analysis***. These tools have already
been successfully used to correlate single or
multiple validated metabolites to a biological
aberration. For example, MZmine 2 was
used to show the interaction between dietary
lipids and gut microbiota for regulating
cholesterol metabolism*, and metabolomic
analysis using both XCMS Online and
MetaboAnalyst revealed metabolic
dysregulation in ischaemic retinopathy*.

As discussed above, to move from
using metabolites as predictive biomarkers
to leading mechanistic investigations,
the metabolites need to be put into their
biological context by identifying
their roles in metabolic pathways, their
interconnectivity with other metabolites,
and their relationships to upstream
genes and proteins. Informatics approaches
can greatly facilitate these analyses and can
help to reveal broad potential metabolite
activity across multiple metabolites
and pathways*, and can also provide
big data integration across different
-omics technologies (see below)* such
as the systems biology approach recently
developed on XCMS Online. As an example,
a recent study took advantage of various
bioinformatics tools to analyse genetic
influences on metabolites in human blood.
For this, a network of genetic—metabolic
interactions was generated, first using
Gaussian graphical models to connect
biochemically related metabolites and
then connecting metabolites with genetic
loci from a genome-wide association
study®. Novel concepts such as these have
maximized the ability to extract important
biological information from metabolites.

Stable isotope-assisted metabolomics. One
of the most promising ways to ascertain the
roles of metabolites in metabolic pathways is
to track their utilization with stable isotope
tracers. These experiments make use of
commercially available metabolites labelled
with stable isotopes such as carbon (**C),
nitrogen (°N) or deuterium (*H). The design
of stable isotope-assisted experiments is
based on a priori information for a particular
metabolite or metabolic pathway of interest;
these studies can thus be led by information
obtained from untargeted metabolomic
analysis (BOX 1).

The results from targeted and/or
untargeted metabolomic analysis do not
provide information on intracellular
metabolic rates and relative pathway
activities, and, for example, increased levels
of one metabolite can be caused by increased
activity of metabolite-producing enzymes or
decreased activity of metabolite-consuming
enzymes®. Following up with stable isotope-
labelling experiments provides additional
information on how a particular compound
(nutrient or substrate) is metabolized with
respect to a particular phenotype and can
help to identify the pathways that contribute
the most to substrate utilization. Thus,
stable isotope-assisted tracing of a labelled
substrate can reveal its metabolic fate.
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There are several ways to carry out
a stable isotope-assisted experiment.
In metabolic steady state experiments,
the measured metabolite pools (or levels)
are equilibrated, and fluxes (or conversion
rates) are roughly constant®. In addition,
the labelling enrichment becomes stable
over time (from a labelled nutrient into
a given metabolite) to reach the isotopic
steady state. The interpretation of
isotope-enriched data in such conditions
can provide information on relative
pathway activity, such as the relationship
between metabolites, and it also allows
quantification of nutrient contributions to
the production of different metabolites®.
By contrast, in kinetic (or dynamic) flux
experiments, the system has yet to reach
steady state, and flux refers to the in vivo
velocities of the individual metabolic
reactions®. Thus, kinetic flux analysis
provides dynamic labelling patterns,
which allow quantification of metabolite
flux when combined with intracellular
metabolite concentrations*®*. As a
notable example, kinetic flux revealed
mechanisms for NADPH metabolism,
including the contribution of the 10-formyl-
tetrahydrofolate pathway to NADPH

Metabolomics

i

(epi)genomics, transcriptomics,
proteomics

Ky %

Mechanistic -
Other omics approaches

production®. Steady state flux analyses have
also contributed to revealing important
substrate utilization, with a recent clinical
example uncovering selective activation of
pyruvate carboxylase over glutaminase 1 in
early-stage non-small-cell lung cancer®.
Stable isotope-assisted metabolomics
can be used to calculate flux within a
specific set of related pathways — or, on
a larger scale, it can encompass multiple
metabolites, labelled precursors and
pathways. However, such analyses are
computationally highly complex for
dynamic experiments, leading to a decrease
in accuracy®. In order to overcome this,
algorithms have recently been developed
that combine both stable isotope analysis
and untargeted metabolomics™*.
This technology, called global isotope
metabolomics, provides comprehensive
differential labelling between two
biological conditions, offering further
understanding of metabolism at a systems
level. Even though untargeted stable isotope
metabolomics is a relatively new tool,
its value has already been demonstrated
in several studies®*’. It also provides
yet another example of the power of
informatics in metabolomic analyses.

PERSPECTIVES

Orthogonal approaches for mechanistic
studies. Owing to the fact that transcript
and protein levels have only a modest
correlation with each other, and that
metabolites can be further modified by
enzymatic processes and can originate
from and be modified by various internal
and external stimuli, it is necessary to
introduce metabolomic analysis approaches
that provide big data integration across
different -omics (genomics, epigenomics,
proteomics and transcriptomics) in

order to comprehensively determine

the consequences of all metabolites on
biology (FIG. 2). Such integrative approaches
can help to determine the relationships
between gene and protein expression and
metabolite concentrations, and the balance
between production and consumption of
metabolites®™. As an example, by combining
metabolomics with metagenomics and
metatranscriptomics data, it was possible to
elucidate the origins and roles of bacteria-
derived metabolites®®*. A recent study

also revealed that gut bacteria transplanted
from thin or obese people recapitulated

the respective phenotypes in gnotobiotic
mice, with changes to microbial genes and
concomitant downstream metabolites®.

RNAi and CRISPR-Cas

Silencing gene expreSS|on

Antimetabolite

f’athway |
interference

Inhibiting enzymatic activity

(oo’

Immunomodulator

Targeting the immune response
(1]

-

Germ-free model, antibiotics

Manipulating the microbiome

Figure 2 | Controlling and influencing metabolism: perspectives from
metabolomics. Using various orthogonal techniques, targets identified with
metabolomics can be further verified and investigated in more detail.
For instance, other ‘omics’ approaches, including (epi)genomics,
transcriptomics and proteomics, can reveal further mechanistic insights into
phenotypical changes associated with the metabolite. Various orthogonal
techniques also allow targeting of metabolic pathways and can be used to
influence metabolite levels and to interfere with metabolic pathways. These
approaches can be directed at the gene level and aimed at silencing gene
expression, with techniques like CRISPR—Cas-mediated knock outs or RNA

interference (RNAI). Alternatively, metabolic pathways can be influenced at
at the protein level with the use of antimetabolites. Manipulating sources of
exposure to different stimuli can also influence the metabolome, providing
further mechanistic insights. For instance, using antibiotics or germ-free
models with species-specific inoculation reveals the direct effect of the
microbiome on metabolite production. Similarly,immunomodulators can be
used to change the efficacy of the host immune system to respond to both
the resident microbiota and pathogens, and their metabolic products. This
collectively opens up possibilities for better understanding and, eventually,
controlling metabolism.

NATURE REVIEWS | MOLECULAR CELL BIOLOGY

ADVANCE ONLINE PUBLICATION | 5

© 2016 Macmillan Publishers Limited. All rights reserved.



PERSPECTIVES

In addition, it was possible to demonstrate
that individuals from rural African and
African American populations that
exchanged diets underwent large changes in
their metagenome and metabolome, and this
altered their cancer risk®".

Leading on from multi-layered omics
approaches, there are a number of additional
orthogonal techniques that can be used to
further investigate the biological relationships
between metabolites, proteins and genes
(FIC. 2). At the gene level, RNA interference
(RNAI) or CRISPR-Cas systems can be used
to modulate gene expression, and this can
help to determine how genes directly affect
enzyme activity and metabolite production.
Similarly, at the protein level, structural
analogues of essential metabolites — so-called
antimetabolites — can be used to inhibit
a specific metabolic process and attenuate
metabolite production or transportation
from the cell®?, thereby allowing investigation
of the function and importance of specific
metabolites®. Other approaches that can
be used are those that directly change the
host metabolome, for instance, through
modulating the exposure of the organism to
certain stimuli. For example, manipulating
the microbiome using germ-free models,
antibiotics or immunomodulators (which
can change the host response to the resident
microbiota) can reveal how bacteria and
their metabolites affect the host and their
metabolism and can allow us to link
these changes to susceptibility to certain
diseases®. As an example, it has been shown
recently that the microbiome is important
for the efficacy of immunotherapeutics
used in cancer therapy; and that only in
individuals harbouring certain bacterial
species can these compounds lead to
efficient stimulation of cancer-fighting
T cells**®*. Of note, T cells are known to have
distinct energy requirements depending
on their activation status, with naive T cells
utilizing oxidative phosphorylation for ATP
generation, and effector (activated) T cells
consuming glucose by aerobic glycolysis
and glutaminolysis to support cell growth,
in a similar manner to cancer cells®**".
Altogether, targeted manipulation of the local
cellular environment to affect cellular energy
status, in concert with modulation of the
microbiome, opens up interesting possibilities
to influence the survival of both effector
T cells and cancer cells®.

Novel biological insights

Advances in metabolomic analysis have
allowed us to gain a novel understanding of
metabolism for various states, processes and

diseases, and a few of the most recent studies
exemplifying the novel biological insights that
can be gained with the use of metabolomics
are discussed below. These studies collectively
show how information at the metabolite

level, particularly when combined with other
techniques, can lead to successful association
of metabolites with phenotypical causality,
thus bringing us closer to a mechanistic
understanding of metabolism.

Role of bacterial biofilms in cancer. A recent
study carried out on a patient population
investigated in more detail a previously
validated biomarker for colon cancer,

N', N"2-diacetylspermine (DAS)®. In this
study, a multidisciplinary approach was used
that combined four different metabolomic
tools with traditional biochemical techniques.
First, it revealed that only DAS, and not

its precursors, was correlated with biofilm
presence as well as with colon cancer, and that
DAS is probably a metabolic end-product of
polyamine metabolism. The metabolomic
approaches used included untargeted analysis
(BOX 1) to compare normal tissues to the
tumour tissues, both of which were either
associated with or devoid of biofilms. This was
followed by a targeted validation step (BOX 1)
to confirm the fold change in metabolites

and expand the analysis to other metabolites
in related pathways. Nanostructure-imaging
mass spectrometry (NIMS)™ (BOX 1) revealed
the in situ localization of DAS in the mucosal
layer of the colon where the biofilms resided.
Global isotope metabolomics was further
used to investigate the metabolic fate of

a stable isotope of DAS in colon cancer

cell lines, confirming that it is indeed an
end-product of metabolism and is not
involved in any other metabolic pathways.

In order to determine the source of the
metabolite (the patient versus the biofilm),
patients were treated with antibiotics to
remove the biofilms (this was confirmed
by fluorescent in situ hybridization (FISH)
analysis), and their samples were analysed
for the presence of DAS. In these tissues,
DAS concentrations were similar to those
previously measured in biofilm-negative
patients, showing that the elevated DAS
levels seen in biofilm-positive patients
originated from the biofilms. In line with
this, immunohistochemical analysis of
patient samples did not show any change
in protein levels of enzymes involved in
DAS production. As DAS is a metabolite
of polyamine precursors, and polyamines
have been associated with various cellular
responses including increased cellular
proliferation, the propensity of colon

cells to overproliferate in the presence of
biofilms was investigated and confirmed

by immunohistochemistry. In addition,
immunofluorescence revealed the

presence of pro-inflammatory cytokines in
biofilm-covered tissues. This inflammatory
state was observed in normal-looking

tissues that were associated with biofilms,
suggesting that such tissues might be in a pro-
carcinogenic state and that biofilm formation
indeed promotes colon tumorigenesis™. In
sum, this example shows how a combination
of several metabolomic approaches with
orthogonal biological techniques can be

used for the initial metabolite discovery,
leading to the elucidation of the potential
role of biofilms in colon carcinogenesis

(FIC. 3). According to this study, colonic
bacteria utilize polyamines to build

biofilms (producing DAS), and this biofilm
formation induces pro-inflammatory and
pro-carcinogenic effects in the host tissues,
increasing the risk of tumour formation.
Interestingly, some metabolomic studies have
associated DAS with other cancers, including
cancers of the lung”, breast™, blood’* and
bladder”™, as well as identifying it as a dietary
metabolite”. Thus, further studies assessing
the roles of diet and bacteria in cancers are
of the utmost importance.

Metabolic regulation of cell pluripotency.

At the epigenetic level, metabolites have
been shown to regulate pluripotency in
human ES cells, with a recent study revealing
a metabolic switch during the transition
between human naive and primed ES cells?.
It has been found that this switch is regulated
by nicotinamide N-methyltransferase
(NNMT), which controls SAM levels that are
required for histone methylation. Analysis

of oxygen consumption rates revealed

that primed human ES cells have a lower
mitochondrial respiration capacity than
naive human ES cells, and transcriptomic
analysis confirmed a downregulation of
mitochondrial electron transport chain genes
in the primed state. The transition from
naive to primed human ES cells also involved
reduced WNT signalling and increased
hypoxia-inducible factor 1a (HIF1a)
stabilization (shown by proteomic analysis).
Untargeted and targeted metabolomics
based on gas chromatography and liquid
chromatography mass spectrometry (GC-MS
and LC-MS) (BOX 1) revealed concomitant
changes in metabolic pathways, including
glycolysis, fatty acid p-oxidation and lipid
biosynthesis. Transcriptomic and genomic
analyses showed that the genes involved in
these pathways were also changed. The use
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of WNT inhibitors and the generation of
HIFla-knockout cells by CRISPR-Cas gene
editing further demonstrated that WNT
activity is required for the naive state, and
that HIF1a is required for human ES cell
transition to the primed state. Furthermore,
the loss of NNMT in naive human ES

cells was associated with an increase in
repressive histone marks (histone 3 Lys27
trimethylation; H3K27me3) in developmental
and metabolic genes that regulate the
metabolic switch in naive to primed cells.
Collectively, this comprehensive analysis
showed that both NNMT and the metabolic
state regulate ES cell development.

Novel therapy for cardiovascular disease.
Another example shows how using
metabolomics, together with other
techniques, can lead to the establishment of

a new therapeutic approach — in this case,
for decreasing the risk of CVD. Initially,
using untargeted metabolomics and then
targeted metabolomics for validation

and quantification (BOX 1), an association
between an increased risk of CVD and
plasma concentrations of choline, betaine
and TMAO was established'>””7%. This was
further replicated in apolipoprotein E”~ mice,
a mouse model that is highly susceptible

to the formation of atherosclerotic plaques —
the primary cause of CVD — that were fed
high-choline and high-TMAO diets, showing
a significant correlation between plasma
TMAO and the formation of atherosclerotic
plaques. Functional experiments revealed that
trimethylamine (TMA)-containing nutrients
such as choline, phosphatidylcholine and
carnitine are dietary precursors for TMAO,
and that liver flavin monooxygenases
(FMOs; primarily FMO3) are responsible

for converting TMA to TMAO. Analysis

of antibiotic-treated mice, together with

the observation that the risk of CVD was
transmissible upon microbial transfer, led to
the conclusion that the microbiome generates
TMA. As inhibition of FMO3 can produce
side-effects and thus does not provide a
sustainable therapy, the next step was to
search for an inhibitor of microbial TMA
production and investigate its potential as

a therapeutic for CVD. Using a structural
analogue to choline, 3,3-dimethyl-1-butanol
(DMB), found in extra-virgin olive oil, it was
possible to inhibit microbial TMA lyases,
which are responsible for TMA formation.

In vivo experiments showed that TMAO
levels were indeed reduced in mice fed with
high-choline or high-carnitine diets when
these mice were simultaneously treated

with DMB. Treatment with DMB also

PERSPECTIVES
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Figure 3 | Novel biological insights. Diacetylspermine (DAS) has a role in biofilm-associated colon
cancer. Various metabolomic and orthogonal biological techniques contributed to the association of
DAS with bacterial biofilms and their role in the pathology of cancer. Fluorescence in situ hybridization
(FISH) analysis and 16S rRNA sequencing identified the presence of bacterial species and biofilms on
colon tissues. Untargeted and targeted metabolomics identified and validated the association of
polyamine metabolites with colon cancer tissues. Stratification by biofilm status showed that DAS was
upregulated primarily in biofilm-associated tissues, which was confirmed by mass spectrometry
imaging. Network modelling using the KEGG and BioCyc databases, and pathway analysis using
untargeted stable-isotope assisted metabolomics, showed that DAS is an end-product of polyamine
metabolism. For further analysis, orthogonal techniques were used. Immunohistochemistry and
immunofluorescence revealed increased cellular proliferation and pro-inflammatory cytokines
in biofilm-associated tissues. The combination of these techniques led to the conclusion that bacterial
biofilms induce a pro-carcinogenic state in the colon epithelium.

prevented atherosclerotic lesion development Mice treated with CMPF at doses

in apolipoprotein E”~ mice on a choline-
enhanced diet”. Altogether, this work led

to the proposal of a novel therapy for CVD,
which bypasses the issues that arise when
using inhibitors targeted to a patient’s own
proteins — an approach potentially resulting
in various side-effects for the patient. Instead,
this study showed that harmful metabolites
can be inhibited at their earliest production,
by ‘drugging’ the gut microbiome, which

in the case of CVD is the source of the
metabolite contributing to the disease.

Metabolite-driven regulation of B-cells. An
important metabolite, 3-carboxy-4-methyl-
5-propyl-2-furanpropanoic acid (CMPF), was
recently identified in the plasma of humans
with gestational diabetes, as well as in those
with impaired glucose tolerance and type 2
diabetes®. CMPF was identified by untargeted
and targeted metabolomic analysis (BOX 1),
with further validation by enzyme-linked
immunosorbent assay (ELISA).

comparable to levels found in human
individuals with diabetes developed glucose
intolerance and impaired insulin secretion
after an oral glucose-tolerance test. This was
monitored using targeted mass spectrometry
and ELISA to measure plasma and tissue
CMPF concentrations, and also by glucose-
stimulated insulin secretion (GSIS) tests.
Mechanistically, CMPF was shown to

impair mitochondrial function, decrease
glucose-induced ATP synthesis and induce
oxidative stress, as assessed by measuring
mitochondrial membrane potential and
with fluorescence- and bioluminescence-
based assays, as well as gene expression
analysis. Inhibitors of organic anion
transporters (OAT), which are responsible
for the clearance of CMPE blocked the
transportation of CMPF into [-cells of the
pancreas and prevented B-cell dysfunction.
In line with this, treatment of pancreatic islets
isolated from OAT3-knockout mouse models
with CMPF had no effect on insulin content
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or GSIS. Altogether, the metabolite CMPE,
identified by metabolomic analysis, provides
a mechanistic link between (-cell dysfunction
and diabetes and has been shown to function
through impairing mitochondrial function
and inhibiting insulin biosynthesis.

Mechanism of ischaemia-reperfusion
injury. Steady state flux analysis was recently
used to help to identify the mechanisms

of ischaemia-reperfusion injury, which

is a type of tissue damage resulting from
oxidative stress and generation of reactive
oxygen species (ROS) following the return
of circulation to tissue regions previously
deprived of oxygen. It was revealed that
succinate, which is a metabolite of the
tricarboxylic acid (TCA) cycle, is the driver
of ROS generation, which can lead to heart
attack and stroke following ischaemia—
reperfusion injury®'. The authors also

used a combination of untargeted and
targeted metabolomics (BOX 1) to reveal an
elevation of succinate levels across several
organs in a mouse model of ischaemia.
Mechanistic studies involving i silico
modelling, mitochondrial membrane
potential measurements, ratiometric
assessment and fluorescence assays revealed
that in ischaemia, succinate dehydrogenase
(SDH) functions in reverse, accumulating
succinate from fumarate. Upon reperfusion,
succinate is oxidized and drives electrons
back through the mitochondrial complex I,
thus generating ROS. Together, these findings
indicated that SDH could be a target for the
prevention of ROS accumulation following
reperfusion of ischaemic tissue. Accordingly,
antimetabolite inhibitors of SDH prevented
succinate accumulation, inhibiting electron
flow through complex I and subsequent ROS
production, and thereby providing protection
from ischaemia-reperfusion injury.

Regulation of cancer cell metabolism.

In addition to the previous example,
metabolic flux analysis was recently used
to investigate the role of mitochondrial
enzyme serine hydroxymethyltransferase
(SHMT2) in human glioblastoma cells.
Specifically, the roles of SHMT2 in central
carbon metabolism and in regulating
pyruvate kinase M2 (PKM2) activity were
investigated and were further linked to
glioma cell survival®. In these experiments,
SHMT?2-knockdown cells were treated
with uniformly labelled *C-glucose and
showed increased flux from pyruvate

to lactate, citrate and alanine, with a
concomitant increase in PKM2 activity
and oxygen consumption rate. In addition,

overexpression of RNAi-resistant SHMT2
cDNA reverted these effects, confirming that
SHMT? negatively affects PKM2. Thus, the
stable isotope analysis showed that SHMT2
expression changes the metabolism of cancer
cells and limits carbon flux into the TCA
cycle via suppression of PKM2. This has been
further shown to improve the survival of cells
in ischaemic tumour regions. In addition,

the study showed that the survival of

cancer cells with high SHMT?2 expression
can be impaired if glycine decarboxylase

is inhibited, as this causes accumulation

of glycine, which then contributes to the
production of toxic metabolites. Altogether,
this series of experiments provided novel
insights into cancer cell metabolism and
demonstrated how metabolic changes can
affect cell properties and responses — in this
case, cell survival.

Future perspectives
Metabolomics is an exciting and evolving
research area, with numerous success stories
demonstrating that its power extends from
biomarker discovery to understanding the
mechanisms that underlie phenotypes.
This step towards mechanistic understanding
has been made possible by advances in
analytical technologies and informatics,
and the combination of these tools has
generated novel insights into chemical
physiology. It has also been made possible as
metabolomics has become more widely used
in combination with orthogonal technologies,
such as genomics, proteomics, structural
biology and imaging, as well as with various
techniques that allow us to modify gene
expression, enzymatic activity, cell signalling
or whole metabolic pathways, including
the contribution of the naturally occurring
microbiota. Thus, the future prospects of
metabolomics lie not only in the unique
information it provides, but in its integration
into systems biology.
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