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Metabolite profiling in biomarker discovery, enzyme sub-
strate assignment, drug activity/specificity determination,
and basic metabolic research requires new data prepro-
cessing approaches to correlate specific metabolites to
their biological origin. Here we introduce an LC/MS-based
data analysis approach, XCMS, which incorporates novel
nonlinear retention time alignment, matched filtration,
peak detection, and peak matching. Without using internal
standards, the method dynamically identifies hundreds
of endogenous metabolites for use as standards, calculat-
ing a nonlinear retention time correction profile for each
sample. Following retention time correction, the relative
metabolite ion intensities are directly compared to identify
changes in specific endogenous metabolites, such as
potential biomarkers. The software is demonstrated using
data sets from a previously reported enzyme knockout
study and a large-scale study of plasma samples. XCMS
is freely available under an open-source license at http://
metlin.scripps.edu/download/.

Recent advances in analytical technology have enabled the
high-throughput analysis of many of nature’s biological building
blocks. DNA microarrays can measure the transcription of the
entire human genome using a single chip.1 Liquid chromatography
coupled to tandem mass spectrometry (LC-MS/MS) can be used
to identify thousands of proteins from a complex mixture.2 More
recently, metabolite profiling has gained popularity using a number
of techniques including nuclear magnetic resonance (NMR) or
different combinations of liquid chromatography (LC), gas chro-
matography (GC), and mass spectrometry (MS).3-5 One particu-
larly popular platform for untargeted metabolite profiling is LC/
MS using electrospray ionization (LC/ESI-MS). Unlike NMR, LC/
ESI-MS resolves individual chemical components into separate
peaks, where NMR provides only a chemical fingerprint. Unlike
GC/MS, it additionally detects nonvolatile compounds, which
make up a large proportion of metabolites. Finally, LC separation

provides a means for resolving isobaric compounds and reducing
signal suppression.3,6

The simultaneous separation and detection of metabolite
analytes using both LC and MS produces complex data sets that
require significant preprocessing before multiple samples can be
analyzed statistically. In preprocessing spectral and separation
data, two general strategies can be taken: (1) Divide the signal
into bins, incorporating all data into a recognition profile for each
sample. (2) Identify and individually quantify significant features,
discarding data not deemed to be part of a feature. Variations and
combinations of those strategies are possible, but here we will
attempt to emphasize their differences. Depending on the ex-
pected variation in the data and the experimental question being
asked, one technique may be more useful than the other. If
discriminating features is nontrivial or if features are difficult to
resolve from one another, then binning may be the most effective
strategy. If correlated shifts in signal distribution are expected,
either preprocessing method may be equally useful. Such varia-
tions are often analyzed with multivariate techniques such as
principal components analysis.

However, if the variation between samples is largely random
except for a small number of features, then an unsupervised
multivariate technique may not be adequate to identify the
significant differences. In those cases, applying a univariate
statistical analysis procedure or supervised multivariate technique
to each individual bin or feature may be the most effective method
for identifying these differences. Variance or bias not attributable
to true differences in analyte abundance generally reduces the
power of such procedures. Thus, an important goal of any
preprocessing method should be to reduce such variance. In that
respect, binning has a number of drawbacks. If breaks between
bins are chosen arbitrarily, the signal from a given analyte may
get split between two adjacent bins. Additionally, multiple inde-
pendent analytes may contribute to the signal of a single bin, thus
decreasing the ability to discern significant differences in indi-
vidual analytes. Feature detection helps avoid those problems by
trying to ensure that each segment of the characterized signal
corresponds to and entirely captures the signal from a single
feature.

A preprocessing routine based on peak detection requires a
robust method for reproducibly characterizing peaks in the three-
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dimensional space (time, mass, intensity) defined by the LC/MS
data. Such an algorithm should be able to detect peaks with a
very low signal-to-noise (s/n) ratio while simultaneously filtering
out random noise. An important property of LC/MS data is that
it is highly anisotropic. That is, the number of data points sampling
a peak in the chromatographic time domain is generally much
greater than in the mass domain. Because of the greater amount
of data per feature, processing data in the chromatographic
domain is more likely to help discriminate between analyte peaks
and noise peaks. Additionally, because the number of isobaric
peaks is generally small, the complexity of the chromatographic
domain is typically much lower.

Filtering noise in the chromatographic domain data requires
some type of signal processing. One recently proposed method7

was median filtering in a specified window size. A perhaps more
optimal signal processing technique for increasing the s/n ratio
is matched filtration. Matched filtration is based on applying a
filter whose coefficients are equal to the expected shape of the
signal. In chromatographic data, the Gaussian function is a useful
simplified description of the peaks shape. A matched filter for a
chromatographic peak would use coefficients equal to a Gaussian
function whose width was the same as the expected peak width.
The net effect of such a filter is the reduction of peaks whose
widths are significantly less than the model peak shape. The
application of matched filtration and the effect of model peak width
on LC/MS data were recently reported.8 Additionally, matched
filtration was recently extended by using the noise characteristics
in areas without signal to improve the filter in an algorithm known
as MEND.9

Another important task in preprocessing data for comparative
analysis is matching peaks representing the same analyte from
different samples. This has been an area of recent development
in the analysis of one-channel chromatographic data, such as gas
chromatography with infrared detection. One recently developed
method10 accomplishes peak matching by first generating an
average chromatogram whose peaks are used to define group
centers. Individual sample peaks are then matched to the master
list of group centers. As noted by the authors, their algorithm
requires that the deviation in retention time from sample to sample
be no greater than the time between two adjacent peaks. That
observation is true of all current peak-matching algorithms as well
as the one presented here. Another group developed a method11

that combined and sorted peak lists from all samples, sequentially
creating peak groups using a fixed retention time window. They
use a number of techniques to resolve collisions in which two
peaks from the same sample are assigned to the same group. A
disadvantage of their method is that it is dependent on having an
optimized retention time window, which may require a good deal
of manual optimization. Importantly, these two methods were
designed for data separated in only one dimension.

One way to overcome the limitations imposed by drifts in
retention time from sample to sample is to use an alignment
algorithm. One often-used technique involves spiking a small
number of internal standards into all samples prior to data
acquisition.12 During data preprocessing, the peaks corresponding
to those standards are identified and then used to linearly shift
the retention time of each acquired sample. There are a number
of major disadvantages to that method. One, it assumes that
deviations in retention time are linear, which we will demonstrate
is not the case. Two, it requires an additional step of sample
preparation and the addition of chemicals that may mask the
presence of other experimentally relevant analytes. To avoid those
problems, a number of methods have been developed to align
chromatographic profiles without internal standards and allowing
nonlinearities. Correlation optimized warping13 (COW) compre-
hensively searches possible sets of segmented warpings that can
be used to align one chromatogram onto another, identifying the
best set of warpings using a correlation metric. That pairwise
method was recently extended14 to use the mass spectral com-
ponent of LC/MS data to further improve the alignment. Noting
speed limitations of the comprehensive search performed by
COW, another group developed a pairwise method10 that used
individual peak matching to calculate nonlinear deviations from a
reference chromatogram. A similar strategy15 was employed to
align HPLC/UV chromatograms. As noted earlier, their peak-
matching and alignment algorithm is dependent on the drift in
retention time being less than the distance between adjacent
peaks. As we will show, that limitation proves insignificant when
the profile is also resolved by mass. Another method has been
developed16 that models the warping function itself, iteratively
improving the coefficients of a quadratic warping function to
minimize the difference between two chromatographic traces.

It is important to acknowledge other software specifically
designed for metabolite profiling. MarkerLynx (Waters) incorpo-
rates peak detection and data set alignment using predefined
internal standards. However, it is designed only to work with
Waters MicroMass mass spectrometers, making import and
analysis of data from other instruments difficult. XCMS, on the
other hand, allows for data processing of various instrument
origins including the Waters Q-Tof Micro, Finnigan LTQ, and
Agilent 1100 LC/MSD. metAlign (Plant Research International
B.V.) also includes peak selection and the option of nonlinear,
iterative alignment, similar to XCMS but using a different
algorithm. metAlign is not based on any published algorithms
beyond the user manual. In addition, its code is proprietary and
not open to outside modification or inspection.

Here we describe our approach to preprocessing LC/MS data
for global, untargeted metabolite profiling. An implementation of
the methodology illustrated here is freely available in an open-
source package called XCMS (an acronym for various forms (X)
of chromatography mass spectrometry). We demonstrate the
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software’s ability to align many chromatographic traces, handle
large data sets, and discover novel differences between two sample
groups.

THEORY
The preprocessing strategy described here builds on and

combines previous ideas in chemometric analysis. In addition, it
includes novel techniques for matching peaks across samples and

aligning the retention times of many samples in a single step. A
general overview of the preprocessing and analysis strategy is
shown in Figure 1. Here, we will describe the first three steps in
detail, peak detection, peak matching, and retention time align-
ment. The latter steps will be described in Results and Discussion.
Importantly, the design of the method is modular and allows
substitution or addition of supplementary processing steps. We
have developed an implementation that enables others to easily
extend and alter the methodology described here.

Peak Detection. The peak detection algorithm used for this
work is based on cutting the LC/MS data into slices a fraction of
a mass unit (0.1 m/z) wide and then operating on those individual
slices in the chromatographic time domain. Within each slice, the
signal is determined by taking the maximum intensity at each
time point in the slice. We term this representation the extracted
ion base-peak chromatogram (EIBPC). Representative examples
of slices are shown in Figure 2. Before peak detection, each slice
is filtered with matched filtration using a second-derivative
Gaussian as the model peak shape. The standard deviation of the
Gaussian was 13 s, equivalent to a full width at half-maximum
(fwhm) of 30 s. As observed by Danielsson et al.,8 a second-
derivative Gaussian model peak generates a new chromatographic
profile reflecting curvature rather than absolute intensity, ac-
complishing implicit background subtraction. They also showed
that the second-derivative matched filter yielded consistent s/n
improvement even if the model peak width was 1.5-4 times the
signal peak width, indicating that performance of the matched
filter is not overly sensitive to variations in peak width.

After filtration, peaks are selected using a signal-to-noise ratio
cutoff. Because of the second-derivative transformation and the
resulting negative component in the signal, determining a noise

Figure 1. Flowchart showing the general strategy for preprocessing
and analysis of LC/MS data for global untargeted analysis of
metabolites and other analytes. Only one raw data file is read at a
time, allowing the analysis of very large data sets. Multiple iterations
of supervised retention time correction are possible, as necessary.
The statistical analysis and visualization steps, not being the focus
of this paper, are shown in less detail.

Figure 2. Illustration of the peak detection method using a single peak from the centroided FAAH knockout data. The peak shown here is
contained in two adjacent chromatographic slices at 268.1 and 268.2 m/z. The algorithm creates overlapping combined chromatograms (i.e.,
m/z 268.0/268.1, 268.1/268.2, 268.2/268.3, etc.) with only the m/z 268.1/268.2 chromatogram showing a clean signal. The data are then processed
with a matched filter whose coefficients are equal to a second-derivative Gaussian function. The second-derivative transformation causes the
filtered chromatogram to cross the x-axis roughly at the peak inflection points. Those zero-crossing points define the area of peak integration.
The peak tails, which typically contain only a small fraction of the signal and may overlap with other peaks, are not integrated.
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value from the filtered data can be problematic. Through iterative
visual inspection of the detected peaks, we determined that taking
the mean of the unfiltered data was the most effective method
for determining the noise. We also found that a s/n cutoff of 10
was the most effective. It is important to note that the actual s/n
ratio of the peak in the unfiltered data could be much lower
depending on the quality of the peak shape. Similar to MEND,9

an additional limit of five peaks per slice was imposed.
As noted by Danielsson et al., the zero-crossing points of the

filtered data provide a useful mechanism for determining peak
width.8 Peaks are characterized by integrating the unfiltered
chromatogram between the zero-crossing points of the filtered
chromatogram. It is worthy of note that no background subtraction
is applied to the unfiltered spectrum prior to integration. Thus,
any background intensity is included in the feature intensity. In
our studies, background has generally been an insignificant
fraction of peak area or remains largely constant from run to run,
making its impact minimal. In the EIBPCs from LC/MS data,
background subtraction may add more noise than it eliminates,
although that question requires further study.

An important detail is the relationship between spectral peak
width and slice width. If the peak width is larger than the slice
width, then the signal from a single peak may bleed across
multiple slices. Low-resolution mass spectrometers, such as those
employing single-quadrupole mass detection, often produce peak
widths greater than the default 0.1 m/z slice used by XCMS. The
MEND peak detection algorithm uses a scoring function to assess
whether a chromatographic peak is also at the maximum of a
spectral peak, preemptively removing such bleed.9 Instead of
eliminating spurious extra peaks during detection, our algorithm
uses a postprocessing step that descends through the peak list
by intensity, eliminating any peaks in the vicinity (0.7 m/z) of
higher intensity peaks.

Another possibility is that the peak width is significantly smaller
than the slice width. High-resolution time-of-flight or Fourier
transform mass spectrometers often exhibit such behavior.
Another extreme example would be centroided mass spectral data,
in which the centroid transformation causes peak width to be
infinitely thin. In that case, depending on the scan-to-scan precision
of the instrument, the signal from an analyte may oscillate between
adjacent slices over chromatographic time, making an otherwise
smooth peak shape appear jagged. (Figure 2) Based on operator
knowledge of the mass spectrometer characteristics, we optionally
combine the maximum signal intensity from adjacent slices into
overlapping EIBPCs (i.e., 100.0/100.1, 100.1/100.2, etc.), That
initial step produces both smooth and jagged chromatographic
profiles, which are then used for filtration and peak detection
(Figure 2). During the vicinity elimination postprocessing step,
peaks detected from smooth profiles (integrated from the full
signal) are selected over peaks detected from jagged profiles
(integrated from an incomplete signal).

The generation of mass slices necessarily reduces precision.
To overcome that loss, the mass of each peak is computed from
the original, high-resolution spectra. First, the full-resolution mass
is determined in each spectrum containing the peak. Second, the
overall peak mass is calculated as a weighted mean of all the full-
resolution masses, using intensities as the weights. The peak
detection algorithm thus handles low-resolution, high-resolution,

and centroided data in a flexible and robust manner.
Peak Matching. After identifying peaks in individual samples,

those peaks must then be matched across samples to allow
calculation of retention time deviations and relative ion intensity
comparison. We developed a peak-matching algorithm that takes
into account the two-dimensional, anisotropic nature of LC/MS
data. Because the accuracy of mass spectrometers is often more
understood and relatively better than corresponding retention time
drifts, we make use of fixed-interval bins 0.25 m/z wide to match
peaks in the mass domain. An example of the peaks contained in
a bin is shown in Figure 3. To avoid splitting a group apart because
of arbitrary bin borders, we use overlapping bins in which adjacent
bins overlap by half (i.e., 100.0-100.25, 100.125-100.375, etc.).
During binning, each peak is counted twice in two overlapping
bins. Similar to peak picking, a postprocessing step is used to
remove peak groups originating from overlapping bins.

After initially binning peaks by mass, we then resolve groups
of peaks with different retention time in each bin. One could apply
fixed interval matching as previously described;10 however, that
requires prior knowledge about the deviations in retention time,
which may not be known at the outset of preprocessing. Instead,
our algorithm calculates the overall distribution of peaks in
chromatographic time and dynamically identifies boundaries of
regions where many peaks have similar retention times. A robust
method of calculating distributions is the kernel density estima-
tor,17 which can be thought of as a histogram smoothed by another
function, in this case the Gaussian. We calculate the distribution
using a fast Fourier transform implementation18 of kernel density
estimation. From that distribution, our method then identifies so-
called “meta-peaks” which represent many peaks with similar
retention times (Figure 3). Starting with the highest peak in the
distribution, we descend down either side of the meta-peak until
the distribution increases again. That process defines a fixed
interval in which all peaks are placed into a group. That procedure
is repeated for all meta-peaks in the distribution. Changing the
width of the Gaussian smoothing function modulates the inclusive-
ness of the matching, although we have found that correct
matching is not highly sensitive to the smoother width.

To prune out insignificant groups of peaks, the algorithm
eliminates each group that contains peaks from fewer than half
the samples. If samples are known to come from different
conditions and can be divided into sets, such as wild type or
knockout, then the method of elimination is slightly modified. In
that case, groups are eliminated in which none of the sets has at
least half its samples represented. To resolve conditions in which
a sample has more than one peak in a group, the algorithm
employs a number of different tie-breaking criteria depending on
the application. For ion intensity comparison, the peak closest to
the median retention time is used. For retention time alignment,
described below, the peak with the highest intensity is used.

Retention Time Alignment. Unlike the previously cited
retention time alignment algorithms, our method simultaneously
corrects the retention times of all samples in a single step. The
ability to do so depends on initially having a coarse matching of
peaks into reasonable groups. That initial matching is possible
because of the mass separation of the chromatographically

(17) Rosenblatt, M. Ann. Math. Statistics 1956, 27, 832-837.
(18) Silverman, B. W. Appl. Statistics 1982, 31, 93-99.
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separated sample and the relatively low complexity of each
individual EIBPC. From the initial grouping, the algorithm
typically identifies hundreds of “well-behaved” peak groups in
which very few samples have no peaks assigned and very few
samples have more than one peak assigned. Such well-behaved
groups have a high probability of being properly matched and
can be used as temporary standards. For every group, the algo-
rithm calculates the median retention time and the deviation from
median for every sample in that group. Because the well-behaved
peak groups are generally distributed evenly over the significant
portions of the chromatographic profile, a detailed, nonlinear
retention time deviation contour can be built for each sample.

After separation, it is possible and often the case that two peaks
with different mass but similar retention times may show slightly
different retention time deviations. Additionally, it is possible to
have parts of the chromatogram where no “well-behaved” peak
groups are present. To deal with that uncertainty, our method
uses a mathematical function to approximate the differences
between deviations and interpolate in sections where no peak
groups are present. One recently developed alignment method16

modeled the deviations using a quadratic function. However, the
typical drifts we have observed are often not well approximated
by a quadratic function. While one could use higher-order
polynomials to fit the deviation data, we have elected to use a
local regression fitting method, loess,19 which uses segmented
low-order polynomials to fit the data. Because of the segmented
fitting, local perturbations in retention time can be accounted for
and thus corrected. The loess fitting method provides the option
of automatically removing residual outliers from the data, provid-
ing robustness against peaks that were initially mismatched.

At the beginning and end of the LC/MS runs, where there
are no well-behaved peak groups available for fitting, the deviation
function is flattened to a constant value. The resulting deviation
profiles are then used to correct the retention times of the original
peak lists, after which they are matched into groups once more.
The matching/alignment procedure can be repeated in an iterative
fashion, successively discerning more and more well-behaved peak
groups for increasingly precise alignment. An example of retention
time deviation profiles determined from several iterative steps of
retention time alignment can be seen in Figure 4.

There are a number of advantages to this single-step alignment
procedure. It works quickly and does not require the selection or
generation of a standard target sample for alignment. Additionally,
straightforward visualization of the retention time deviation profiles
and the data from which they were fitted allows the method to
be manually supervised if desired. An additional strength of the
alignment algorithm is that it works purely with peak data.
Although this has been seen as a weakness during the develop-
ment of other alignment algorithms, the preprocessing strategy
described here has a specific interest in that peak data. Because
peak identification is a prerequisite of this preprocessing approach,
it is logical to leverage that information for retention time
alignment. Furthermore, through separation, many overlapping,
low-intensity peaks can be resolved in the same time window that
a single peak would be seen in single-channel chromatography.
The additional resolution provides sufficient peak density to
perform quite granular retention time correction without incor-
porating peak shape. Depending on the application, it might be
reasonable to consider employing other retention time alignment
techniques, such as COW, as an alternative or complement to the
peak-based technique described here. However, we have found
the algorithm as described performs well in correcting for both
global and local perturbations in retention time.

(19) Cleveland, W. S.; Grosse, E.; Shyu, W. M. In Statistical Models in S;
Chambers, J. M., Hastie, T. J., Eds.; Chapman & Hall/CRC: Pacific Grove,
CA, 1991.

Figure 3. Example of cross-sample peak matching from the FAAH data involving 12 samples. Individual peaks are shown as sticks indicating
relative intensity. The smoothed peak density profile is shown as a solid continuous line. Identified groups are flanked by dashed lines. The
peak density profiles were smoothed with Gaussian functions of SD 30 and 10 s, respectively. Note how decreased smoothing eliminates a
peak from the second group.
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EXPERIMENTAL SECTION
Plasma Metabolite Extraction and LC/MS Analysis. A total

of 238 plasma samples were included in this study. Ice-cold
methanol (150 µL) was added to 50 µL of plasma, vortexed briefly,
and incubated at 4 °C for 20 min. The supernatants were collected
after centrifugation at 13200g for 10 min; these were dried and
resuspended in 50 µL of 95/5 (v/v) water/acetonitrile. Reversed-
phase chromatography and mass detection of the plasma metabo-
lite extracts was performed on an Agilent 1100 LC/MSD SL
system. Duplicate runs of each extraction were analyzed randomly,
with a blank run between each sample to prevent carryover. For
each run, 10 µL of serum metabolite extract was injected onto
the same C18 column (Symmetry column, 2.1 × 100 mm, 3.5-µm
particle size; Waters, Milford, MA) and eluted at a flow rate of
250 µL/min under gradient conditions of 5-90% B over 60 min.
Mobile phase A consisted of water/acetonitrile/formic acid (95/
5/0.1, v/v/v), and B consisted of acetonitrile/formic acid (100/
0.1, v/v). Mass spectral data from 100 to 1000 m/z were collected
in the positive ionization mode. Most samples were analyzed in
duplicate. Several were analyzed in triplicate, and one was analyzed
in singlet. The samples were analyzed in 31 days of continuous
data acquisition.

Fatty Acid Amide Hydrolase (FAAH) Knockout Study.
Data from a previously published study4 examining the endog-
enous substrates of FAAH were reanalyzed. Briefly, spinal cord
and brain tissue samples were taken from six wild type (WT) and
six knockout (KO) mice and run in both positive and negative
ion modes for a total of eight distinct sample types. Sample data
were acquired in centroid mode on an Agilent 1100 LC/MSD
system. Here, we only show data from the 12 positive-mode spinal
cord KO/WT samples.

RESULTS AND DISCUSSION
To help illustrate the algorithmic details of XCMS, we reana-

lyzed a subset of the raw data from a previous FAAH knockout
study4 involving 12 samples. Additionally, this provides an example
of XCMS discovering and visualizing novel differences between
a set of LC/MS samples. To demonstrate the scalability, alignment
of subtle shifts in retention time, and reproducibility, we analyzed
data from over 200 plasma samples run in duplicate. All processing
was done using XCMS version 1.0.0. Both analyses were initiated
by compiling a list of all peaks in each sample using the peak
detection algorithm. In both data sets, several thousand peaks
were detected per sample. In our experience, the presence of
isotopic peaks, adduct peaks, and multiply charged ions have not
imposed significant limitations on data analysis. Therefore, a
deisotoping routine has not yet been integrated into the peak
detection algorithm, although there are plans to do so in the
future. A summary of the analysis results and execution times is
provided in Table 1.

After peak detection, the cross-sample peak-matching routine
was used to determine initial groups of peaks thought to represent
the same metabolite across samples. To allow for modest retention
time differences between samples, the peak density smoother was
initially set to a standard deviation (SD) of 30 s (Figure 3). Because
cross-sample peak matching is based on the distribution of peaks
across time, two peaks separated by several times the SD can be
grouped together, provided there are other peaks distributed
between them. Our experience has shown that the peak grouping
of XCMS is much more dependent on the underlying peak
distribution rather than the precise SD used. Unless there is an
especially punctuated change in LC performance, most peaks
representing the same analyte should be evenly distributed around

Figure 4. Retention time deviation profiles used for aligning 476 LC/MS analyses from the serum samples. All times are in seconds. The
deviation profiles were created after two iterative steps of retention time alignment. A positive deviation indicates that the sample was eluting
after the median retention time, and a negative deviation indicates that the sample was eluting before the median retention time. Sample profiles
are colored in a rainbow by the order in which they were run, with red being the first samples and violet being the last samples run.
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a central retention time, as shown in the unaligned chromatograms
of Figure 5. The peak-matching algorithm was designed with that
conjecture in mind.

In most cases, the peak-matching algorithm can account for
subtle shifts in retention time when there are few metabolites of
similar mass. However, to more correctly match the isobaric peaks
eluting near each other, the retention time alignment algorithm
is used. The algorithm recognizes which groups have a high
probability of being correctly matched (the well-behaved peak
groups) and uses those groups to determine nonlinear profiles of
retention time drift across the length of the LC run. An example

of profiles from the plasma samples is shown in Figure 4. The
algorithm then uses those profiles to warp all peaks into alignment,
which can be thought of as transforming each profile into a
straight line through 0 retention time deviation. For the plasma
samples, the retention time varied by up to 100 s. For the FAAH
knockout samples, the retention time varied by up to 50 s (data
not shown). After retention time alignment, the smoother was
reduced to a SD of 10 s and the peaks were regrouped.

One alignment strategy that can be employed for metabolite
analysis is to use an internal standard to linearly shift the retention
time across the entire run.12 Such a strategy could be visualized
by shifting each of the profiles in Figure 4 up or down so that
they intersect at the time point of the internal standard. With such
a strategy, it is impossible to correctly align the samples and may
worsen the alignment depending at what time the internal
standard elutes. For example, between 1500 and 2500 s, a large
fraction of the samples eluting early switch to eluting late, and
vice versa. If the internal standard had been chosen at one of those
extremes, the alignment at the other extreme would be signifi-
cantly worse. On the other hand, the alignment algorithm de-
scribed here properly aligns peaks at both time points (Figure 5).

It is important to distinguish between peaks detected during
peak picking and the features that are eventually used for relative
ion intensity comparison. After peak picking, the peak-matching
routine uses the combined peak information from all samples to
determine where significant signal is located. A noise peak present
in only a few samples is discarded as insignificant. Only peaks
that appear reproducibly in a given fraction of samples are retained
for relative ion intensity comparison. In that regard, when judging
the analytical capacity of metabolite profiling techniques, it is
perhaps more useful to consider the number of highly reproduc-
ible features rather than the average number of features detected
per sample. Both data sets described here contained several
thousand reproducible peak groups.

Table 1. Data Processing Results Summarya

plasma
samples

FAAH
knockout

samples 476 12
data storage mode continuum centroid
mean file size/sample (MB) 175 28
sample classes 8 2
mean peaks detected/sample 3899 2564
well-behaved peak groups 167 316
reproducible peak groups 3071 1853
mean filled in peak groups/sample 898 741

algorithm running times (s)
mean peak detection/sample 177 61
Cross-sample peak matching 74 32
Retention time alignment 209 3

a Well-behaved peak groups, used for retention time alignment, were
those in which there was at most one sample with no peaks assigned
and at most one sample with two peaks assigned. Reproducible peak
groups, used for statistical analysis, were those in which one of the
sample types had at least half its samples represented. For most of
the reproducible peak groups, there were still samples that did not
have a peak assigned to the group. Integrating samples in the area of
those peak groups filled in the missing data points. Algorithm execution
times were measured using an Intel 3.0-GHz Xeon processor with 2-GB
memory.

Figure 5. Overlaid extracted ion chromatograms from a subset of 126 random plasma samples. Retention time alignment is demonstrated for
the extremes of the deviation profile at 1500 and 2500 s (Figure 4). A simple linear retention time shift could align peaks at only one of the time
points, but not both. The nonlinear alignment algorithm in XCMS properly aligns peaks over all times. Darkened lines indicate where the peaks
were integrated for relative ion intensity comparison.

Analytical Chemistry, Vol. 78, No. 3, February 1, 2006 785



After determining a set of reproducible peak groups, most
representing an individual analyte, XCMS determines which
samples are missing from each peak group. Using statistics
gathered during peak detection about where peaks begin and end,
and aligned retention times for each sample, the raw LC/MS data
are integrated to fill in intensity values for each of the missing
data points (Figure 1). This provides significant advantages over
using data from a vendor-supplied or third party peak detection
program alone, as peaks that are missed during peak detection
can be measured directly from the aligned raw data. As shown in
Table 1, a significant number of potential peaks are missed during
peak detection. That observation that is likely true of most, if not
all, peak detection algorithms, given the inherent uncertainty close
to the s/n cutoff. In the case that a peak shows up in one class of
sample but not another, as in the FAAH knockout study, the step
of filling in missing peak data is necessary for robust statistical
analysis.

To assess the analytical reproducibility of the LC/MS acquisi-
tion and data processing, we calculated intensity differences
between peaks from duplicate acquisitions of the same serum
sample. Figure 7 shows median values of those differences for
five fractions of the dynamic range. The reproducibility for high-
intensity peaks was significantly better than that for low-intensity
peaks. Because many of the lowest intensity data points were

integrated purely from baseline noise, poor reproducibility is
expected. The majority of duplicate data points showed less than
a 20% difference in intensity. Given that degree of uncertainty,
fold changes above 1.5 should be readily detectable with the
current methodology. Importantly, no intensity normalization was
used in the course of preprocessing. Normalization may further
reduce variance and would be an important area of future study.

After preprocessing, any number of statistical analyses can be
performed. For the task of identifying differentially regulated
metabolites, we employed a simple univariate t-test to identify
metabolites whose intensities are significantly different from
sample class to sample class and rank the metabolites by p-value.
While there are many other options for identifying differences,
the focus of this work is on preprocessing prior to that analysis,
not the analysis itself.

The final stage in the analysis strategy enabled by XCMS is to
visualize the raw data for metabolites of interest. Most current
software is not designed to visualize chromatograms from more
than a few samples at once. However, when large data sets are
analyzed, such verification is crucial and can be a limiting factor
in purely numerical studies. To address that problem, XCMS
automatically produces superimposed, aligned EICs for peaks of
interest, allowing quick visual scanning of hundreds of metabolites
at once. Examples of those EICs are shown in Figures 5 and 6.

Figure 6. Using manual data analysis, Saghatelian et al.4 characterized numerous N-acylethanolamines (NAE) and N-acyltaurines (NAT) as
being metabolized by FAAH. On the same data set, the software described here identifies several additional metabolites also regulated by
FAAH, but which are neither NAE/NAT nor previously characterized. Darkened lines indicate where the peaks were integrated for relative ion
intensity comparison.
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In particular, Figure 6 shows metabolites potentially regulated by
FAAH that were not identified by the authors’ original manual
data analysis.

To help begin the identification of unknown metabolites
showing differential regulation, XCMS provides links to the Metlin
Metabolite Database (http://metlin.scripps.edu) and produces a
list of potential metabolite identities based on exact mass. For
instance, in the FAAH knockout data set, the most statistically
significant (p ) 5.0 × 108) differentially regulated ion was 300.2
m/z and eluted at 56.6 min. Given a mass uncertainty of (0.15
m/z, there were 10 metabolites recorded in Metlin (Supporting
Information Figure S-1). N-(2-Hydroxyethyl)palmitamide, an N-acyl
ethanolamine and known substrate of FAAH, was among those.
It is important to note that N-(2-hydroxyethyl)palmitamide was
added to Metlin after publication of the initial study. As more and
more metabolites are characterized and placed into public
databases, the number of successful matches, as in this case, will
increase. In addition, higher accuracy mass measurement will

further narrow the number of metabolites identified based on mass
alone.

CONCLUSION
Three important aspects of XCMS are its design, availability,

and flexibility. It is written in the R statistical programming
language20 and is freely available under an open-source license.
It is distributed through both the Metlin Metabolite Database21

and the Bioconductor bioinformatics project,22 which itself pro-
vides a wealth of easily integrated tools for analysis of prepro-
cessed, high-throughput data. The openness of the software allows
it to be easily customized for different data analysis needs or
optimized for a particular application. Alterations can be under-
taken without requiring significant investment developing the
infrastructure and algorithms that XCMS already provides. This
type of open software architecture will be increasingly important
for encouraging the growth and development of data-intensive
research.23

Much of the software currently available for LC/MS analysis
is either proprietary or restricted to a particular vendor’s instru-
ments. By contrast, the software described here has been
designed to be independent of instrument vendor. That enables
identical data analysis to be undertaken and repeated using
instruments from a variety of manufacturers. While other pro-
grams include tools for peak identification and visualization, they
may be designed in a very rigid manner that does not allow
automated analysis of many samples. On the other hand, the
design of XCMS inherently allows for many complex tasks to be
programmed and performed without user intervention. A key
example of that flexibility is how it integrates peak detection,
statistical analysis, and subsequent visualization of raw data for
verification purposes. Additionally, while the software has been
designed for LC/MS metabolite data, it could be adapted to work
with other types of data, such as peptide digests, or other
instrumentation, such as GC/MS.
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Figure 7. Sample percent intensity differences across the dynamic
range (from duplicates). Random variations in both data acquisition
and processing contributed to differences in peak intensity from
otherwise identical samples. The highest peak intensity fraction
showed the least error with a median difference of 9%. The lowest
peak intensity fraction showed the greatest error with a median
difference of 21%. That fraction included intensity data from empty
spectral regions containing only background noise (i.e., the wild type
data in Figure 6). To produce this figure, the pairwise percent intensity
differences were calculated for all 3071 peak groups in each of 238
pairs of duplicate serum samples. The percent intensity difference is
defined as 100(absolute intensity difference)/(mean intensity). The
resulting 730 898 percentages were divided into five equally sized
fractions across the dynamic range of intensities. Mean peak intensi-
ties were normalized to a maximum of 1.
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