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A nonlinear alignment strategy was examined for the
quantitative analysis of serum metabolites. Two small-
molecule mixtures with a difference in relative concentra-
tion of 20-100% for 10 of the compounds were added
to human serum. The metabolomics protocol using UPLC
and XCMS for LC-MS data alignment could readily
identify 8 of 10 spiked differences among more than 2700
features detected. Normalization of data against a single
factor obtained through averaging the XCMS integrated
response areas of spiked standards increased the number
of identified differences. The original data structure was
well preserved using XCMS, but reintegration of identified
differences in the original data reduced the number of
false positives. Using UPLC for separation resulted in 20%
more detected components compared to HPLC. The
length of the chromatographic separation also proved to
be a crucial parameter for a number of detected features.
Moreover, UPLC displayed better retention time repro-
ducibility and signal-to-noise ratios for spiked compounds
over HPLC, making this technology more suitable for
nontargeted metabolomics applications.

Mass spectrometry has established itself as a useful tool for
metabolomics analysis for its capability to measure compounds
present at very low levels and at the same time provide structural
information.1,2 With separation systems such as gas or liquid
chromatography (GC or LC) coupled with mass analysis, the
information content can be dramatically increased due to reduced
ionization suppression and temporal separation of isomers. Prior
to any statistical or multivariate analysis of acquired data, it is a
prerequisite that the data are aligned, i.e., in a GC- or LC-MS
analysis, m/z (X) at retention time (Y) must be consistent
throughout all observations. While drift in the m/z direction is
fairly straightforward to correct by m/z calibration, the error in
the retention time domain is more difficult to align. We have
recently developed XCMS,3 a software for nonlinear retention time

correction of XC-MS data, where X denotes the possibility to
use various types of chromatography prior to MS analysis. The
software is freely available under an open source license from
(http://metlin.scripps.edu/download/). XCMS reads CDF files
from the mass spectrometer, finds peaks based on a matched filter
whose coefficients are equal to a second-derivative Gaussian
function. The peaks are reported in the form of “features”, which
are defined as a unique m/z at a unique time point. XCMS matches
the features and performs nonlinear retention time correction
through a local regression fitting method using peak groups that
are initially well grouped. The output from XCMS can be visualized
as a series of superimposed retention time corrected extracted
ion chromatograms and also as a tab delimited table with columns
denoting observations and a row for each feature aligned across
the observations. The values populating the data matrix are
computed areas representing the response from each feature. The
table can be imported into Microsoft Excel, Matlab, or any
preferred multivariate or statistical software for further analysis
without additional processing, as the data are already aligned.

The aim of the present study was to evaluate the XCMS
algorithm’s capability to identify large and small differences in a
complex biological matrix. A well-controlled set of LC-MS data
was generated by spiking two sets of mixtures containing 19
endogenous and exogenous compounds with relative concentra-
tion differences (20-100%) for 10 of the compounds into human
serum.

Several strategies to achieve data sets relevant for further
statistical processing are found in the literature, and three main
strategies can be distinguished;

(1) Alignment of Chromatograms. Alignment of the chro-
matograms without prior peak picking can be potentially very
useful due to little or no operator intervention in setting criteria
for peak finding. Furthermore, it enables direct differential analysis
between entire sets of data matrices. An algorithm for aligning
raw LC-UV chromatograms, named COW, was developed by
Nielsen and co-workers.4 The COW algorithm has been further
adapted to make use of MS data for chromatogram alignment.5
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Another algorithm designed to align one-dimensional GC-FID data
was developed by Johnson and co-workers6

(2) Summation or Binning of Chromatographic Data.
Summation of chromatographic segments in LC- or GC-MS
analysis is one way of reducing the problems associated with data
alignment. Summation of m/z data across preset time windows
will result in no loss of information and the alignment error will
be confined to the edges of the windows or bins. After multivariate
analysis, which reveals windows displaying significant difference
and enables subsequent deduction of the m/z responsible for the
difference, a reversion to the original chromatograms can confirm
the differences7,8

(3) Curve Resolution or Deconvolution. This strategy
involves finding components (a component refers to a chromato-
graphic peak representing a metabolite) that are subsequently
matched over the different observations (data sets). With GC-
MS electron ionization (EI) spectra, deconvolution using the free
AMDIS software9,10 or proprietary mass spectrometer manufac-
turer software can be done prior to matching of the components
with software such as MSFACT (RTAlign).11 However, AMDIS
and other software primarily developed for EI spectra require the
presence of several mass traces that converge at the same
retention time as a prerequisite for deconvolution. With LC and
electrospray ionization (ESI), this requirement is not always
fulfilled. For LC-MS data, Windig and co-workers developed the
component detection algorithm (CODA),12 which reduced the
number of spectra to be investigated by 1 order of magnitude.
Component-resolving algorithms developed for LC-MS data
include GENTLE13,14 and MEND.15 More recently, other integrated
strategies for comparison of LC-MS data in metabolomics have
been developed16,17 including the MZmine software.18 There are
also commercial software available such as MS-resolver (Pattern
Recognition Systems) and MarkerLynx (Waters), whose perfor-
mance have been compared,19 and metAlign (Plant Research
International), which has been used for mining LC-MS data in a
nontargeted fashion.20 After peak finding, matching of peaks has
to be performed. For this, several different matching strategies

have been used. Examples include the use of time windows to
assign components with specific retention time and intensity to a
certain component group.11 “Master chromatogram alignment”,
i.e., matching of all the peaks in a sample to a master peak list, is
done using retention time and an m/z value to align components
possessing similar m/z values18 and are within time proximity of
each other. Another approach is to calculate spectral similarity
for adjacent components in a specified time segment and thereby
matching components with high similarity within that particular
time segment.14

Ultraperformance liquid chromatography (UPLC)21,22 is a
promising separation technique for metabolomics. The reduced
particle size (1.4-1.7 µm) of the packing material offers increased
separation through narrower chromatographic peaks over normal
particle size (3.5-5 µm) HPLC, resulting in increased peak
capacity, lower ion suppression and potentially better signal-to-
noise ratio (S/N) for observed components. When analyzing
complex mixtures with LC-MS, as often is the case in metabo-
lomics investigations, UPLC can be of great advantage over regular
microbore HPLC in that more components can be detected.23

In the present study, we have examined the quantitative
aspects of the XCMS data alignment algorithm for metabolites,
endogenous and exogenous, in human serum using UPLC-MS
and HPLC-MS. The approach was shown to identify features with
a concentration difference of only 20% between two sample classes
among thousands of features that remained constant.

EXPERIMENTAL SECTION
The workflow is illustrated in Figure 1 and composition of the

two spiking mixtures is shown in Table 1.
Chemicals and Sample Preparation. All solvents used were

of HPLC grade (J.T. Baker, Philipsburg NJ). The serum used was
human serum from clotted human male whole blood, sterile-
filtered (Sigma, St. Louis, MO). The bovine serum albumin (BSA;
Sigma) was subject to reduction, alkylation, and tryptic digestion.24

2H5-Phenylalanine (98%) was obtained through Cambridge Isotope
Laboratories (Andover, MA). All other chemicals for spiking
mixtures A and B were obtained in high purity from Sigma.
Protein precipitation of five aliquots (100 µL) of the human serum
was performed with cold methanol.25 The precipitated aliquots
were dried, resuspended in 100 µL of acetonitrile/water, 5/95 v/v
(0.1% formic acid) and subsequently pooled. From the pooled
serum extract, 100 µL was aliquoted to four different HPLC vials.
To vial one, 900 µL of acetonitrile/water, 5/95 v/v (0.1% formic
acid) was added. To vial two, 87.7 µL of BSA digest (5.7 µM) and
812.3 µL of acetonitrile/water, 5/95 v/v (0.1% formic acid) were
added, and to vial three and four, we added 87.7 µL of BSA digest
(5.7 µM) and 808.3 µL pf acetonitrile/water, 5/95 v/v (0.1% formic
acid) in addition to 4 µL of stock solution of mixtures A and B,
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respectively. By keeping the volume constant (1000 µL), dilution
variances in the serum were canceled.

LC-MS. The separation system used was a Waters Acquity
UPLC (Waters, Millford, MA) coupled to Micromass Q-TOF Micro
(Waters). The same system was used for both UPLC and HPLC
experiments. Elution buffers were as follows: (A) water with 0.1%
formic acid and (B) acetonitrile with 0.1% formic acid. Linear
gradients from 5%B/95% A to 95%B/5% A over 10 or 30 min were
used after 1-min fixed initial conditions. The gradient was kept at
95%B/5% A for three column volumes, and the column was
subsequently reequilibrated with four column volumes. Flow rates
used were 0.25 and 0.5 mL for HPLC and UPLC, respectively,
and the flow was split 1:1 postcolumn in the UPLC experiments.
We used a BEH chemistry C18 (2.1 × 100 mm) 1.7-µm particle
size column for UPLC experiments and a Symmetry C18 (2.1 ×
100 mm) 3.5-µm particle size column for HPLC experiments (both
obtained from Waters). The column heater was set to 40 °C, and
back pressures noted were around 8000 psi/1600 psi for UPLC/
HPLC, respectively. Injection volume was set to 20 µL full loop
with an overfill factor of 2.

The mass spectrometer was used with the regular ESI interface
and calibrated prior to experiments. Data were collected in
continuum mode between 100 and 1000 m/z with an acquisition

Figure 1. Workflow scheme, the acquired data were converted to CDF format. The CDF files were subsequently processed using XCMS. The
output from XCMS contained aligned data that can be viewed as picture files and also as a resultant matrix where samples (observations)
constitute the columns and the features (variables) constitute the rows. The features (a specific m/z at a unique time point), in this case 2711,
were normalized and sorted according to p-value obtained through a t-test. Features that display significant difference (p <0.05) between sample
classes A and B were subject to reintegration in the raw data. The reintegrated areas were again normalized and sorted according to p-value,
and compounds with p <0.05 constituted the final table of metabolites that were different between samples A and B.

Table 1. Composition (Injected Amount) and [M + H]+

of Spiking Mixes Useda

compound [M + H]+
mix A
(pmol)

mix B
(pmol)

nicotinic acid 124 80 40
phenylalanine 2H5

b 171 200 200
atenololb 267 0.2 0.2
sulpiride 342 0.2 0.16
caffeine 195 0.2 0.2
tacrine 199 0.2 0.16
tetracycline 445 2 2
chlorotetracyclineb 479 2 2
tenoxicam 338 0.2 0.1
propranololb 260 0.2 0.2
prednisone 359 2 0
haloperidol 376 0.2 0.3
bis tacrinec 493 0.2 0.3
piroxicam 332 2 2.4
propafenone 342 0.2 0
mifepristone 430 0.2 0.24
verapamilb 455 0.2 0.2
ketoprofen 255 0.2 0.2
oleamideb 282 2 2

b Compounds used for normalization. a Compounds are arranged in
relative elution order (UPLC) with top entry eluting first. c Bis tacrine
was detected by its fragment at m/z 247.
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rate of ∼2 spectra/s, which produced at least 5 spectra/
chromatographic peak (scan speed 0.52, interscan delay 0.1). Each
of the four pools of serum was injected in five replicates with each
chromatographic setup, giving a total of 80 injections.

Data Analysis. The files were converted to CDF format using
Databridge (Waters) on a PC workstation (Pentium 4, 3.20 GHz,
1 GB RAM). The conversion for 80 LC-MS runs took ∼4 h. The
size of the converted CDF files ranged between 0.5 and 1 Gb,
which required a fairly powerful computer for further processing.
The publicly available XCMS software previously described3 was
downloaded (http://metlin.scripps.edu/download/) and installed
on a computer with Linux operating system (dual processor 3.2
Ghz and 6 Gb RAM). The XCMS processing of 80 samples took
∼24 h. Data were processed using XCMS’s default settings (see
documentation for XCMS, http://metlin.scripps.edu/download/)
with the following exceptions: xcmsSet (profmethod)“binlinbase”),
retcor (p)”m”, f)”s”, missing)5, extra)5, span)0.2), group
(bw)10 for HPLC and bw)5 for UPLC). The resulting table (TSV
file) was viewed in Excel (Microsoft, Redmond WA). All t-tests
performed in Excel were two-sided, unequal variance. The number
of features originating from BSA was determined by comparing
serum-only with serum spiked with BSA digest (five and five
replicates), with p-value cutoff set to <0.01. The reintegrated areas
were obtained by using QuanLynx (Waters) and by setting up an
integration parameter file using the average m/z and retention
time for features found to be significant (p <0.05) in normalized
XCMS data. The normalization was performed by dividing each
number in the XCMS output matrix with a scalar obtained through
averaging the XCMS area value for the six compounds that
remained constant between the spiked mixtures of A and B (Table
1). The reintegrated values were renormalized against a scalar
obtained in the same manner from Quanlynx-integrated values.
Apex peak tracking was used for defining peaks in Quanlynx.
Reported false positives refer to cases where the t-test rejected
null hypothesis when it was actually valid; that is, the t-test
incorrectly reports that it has found a positive result where none
really exists. The LC-MS data is available for download in CDF
format from http://metlin.scripps.edu/download/.

RESULTS AND DISCUSSION
In a comprehensive metabolomics study, the aim is to compare

the metabolomes of different samples in a nontargeted fashion.
The result of such a comparison should list features/metabolites
with quantitative information that are reflecting biochemical
changes. The structural identification of unknown metabolites is
a time-consuming process, and it is therefore desirable to make
this list accurate, reflecting only the significant changes, both small
and large, with as few false positives as possible.

Design of Experiment. The experiment was designed as
splitting a pool of human serum that previously had been subjected
to protein precipitation into four aliquots. One aliquot was kept
as control. The second pool was spiked with a BSA digest to
further increase the complexity. The third pool was spiked with
a BSA digest and with a mixture (A) consisting of 19 nonendog-
enous compounds. The fourth aliquot was spiked with a BSA
digest and with a mixture (B) that was a modified version of
mixture A. The composition of mixtures A and B are shown in
Table 1. While 9 compounds were kept constant, 10 concentration
changes were made between (A) and (B). The changes included

removal of two compounds, increased concentration in four
compounds by 20 and 50%, and reduced concentration in four
compounds by 20 and 50%, respectively. The strategy was to
introduce a known set of differences between the two sample
classes A and B, while keeping thousands of components constant,
and follow how well our metabolomics strategy could identify
these small differences. The design involved analyzing each of
the four plasma pools with both UPLC and HPLC using long and
short separation gradients. The primary motivation for this design
was to evaluate the effect of the length of the chromatographic
analysis on the number of detected components and on their
retention and response reproducibility.

The outline of the examined metabolomics workflow is il-
lustrated in Figure 1. After acquisition, the data were converted
to CDF format and read into XCMS. The unaligned data were
aligned and the output from XCMS can be visualized as aligned
and superimposed extracted ion chromatograms or as a data
matrix with observations as the columns and features (named by
m/z and retention time) as rows aligned across the observations.
The resulting table, in tab delimited format, can be readily
exported to Microsoft Excel, Matlab, or other multivariate/
statistical software. After normalization, sorting of the features
according to p-value (cutoff p <0.05), calculated by performing a
t-test between classes A and B, generated a list of significant
features. The ions in the list were reintegrated with the raw data.
Integration was manually inspected, and the integration report
was exported to Excel where a new normalization was performed
against areas from the six fixed compounds (integrated from the
original data). A t-test was calculated on the resultant normalized
data matrix, and the features were subsequently sorted according
to p-value (cutoff p <0.05). The resulting list would be used for
reverting back to raw data (or reanalyzis with other instrumenta-
tion) for identification of the most significantly varying features.

UPLC versus HPLC. After XCMS processing, the resulting
tab delimited table was imported to Microsoft Excel. The number
of detected features revealed that UPLC was superior to HPLC
in that more features were detected. For both the 30- and 10-min
gradients, UPLC generated roughly 20% more features than the
HPLC analysis (Table 2). The length of the separation was also
important for the number of detected features. This illustrates a
potential for gradient length optimization by using XCMS to
increase the gradient length until the increase in number of
detected features plateaus. By searching the output from XCMS
for the known added compounds, it was observed that the longer
gradient enabled XCMS to extract more ions correctly (Table 2).
The two compounds that were not found by XCMS with the 30-
min gradient were tenoxicam and ketoprofen. With UPLC, these
compounds could be manually identified in the chromatogram
with an S/N close to the detection limit, whereas they remain
undetected in the HPLC chromatogram even after manual inspec-
tion. A BSA digest was introduced to three of the serum aliquots
to increase the complexity of the samples and to test whether
XCMS could be used for finding quantitative differences among
peptides and, thus, have applications in quantitative proteomics.
In a comparison between the serum with and without spiked BSA
digest, the 30-min UPLC gradient identified the highest number
of significantly different features originating from the digest (Table
2). The XCMS report table contained minimum and maximum
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retention time for each feature as measured prior to correction.
By subtracting minimum from maximum for each feature, an
estimate of retention time correction was obtained. These differ-
ences were averaged over all observations for the different
separation schemes and are reported in Table 2. Interestingly,
the average required retention time corrections were much lower
using UPLC. This might reflect an individual column difference
but could potentially imply higher retention time reproducibility
using an ultra-high-pressure separation system. Response repro-
ducibility was similar between UPLC and HPLC as shown in Table
2. The largest fraction of features showed an RSD between 5 and
25%. Taken together, these results confirm that UPLC offered an
advantage in terms of more detected ions, which has been
suggested in previous work.23 Surprisingly, the retention time did
appear more reproducible with UPLC compared to HPLC. This
might in part be due to better peak shapes obtained with UPLC
and the fact that faster chromatography (10-min gradient) dis-
played higher reproducibility (Table 2). However, faster chroma-
tography resulted in less detected features overall and is therefore
not a good option for untargeted comparisons. Signal-to-noise
values comparing UPLC and HPLC are displayed in Figure 2A.
For a majority of the spiked compounds, UPLC gave higher S/N;
this is in agreement with previous research.22 Shown in Figure
2B is a more detailed examination of selected EICs and corre-
sponding spectra combined over elution profiles from representa-
tive spiked compounds. One reason for better signal-to-noise ratios
is the narrower elution profiles obtained with UPLC. Furthermore,
it is evident by comparison of the spectra in Figure 2B that the
spectral purity of the chromatographic components is higher with
UPLC. Narrower peaks will result in better separation and
therefore less suppression during ionization.

Normalization and Reintegration. In the literature, several
normalization strategies are found.8,26-28 It has also been demon-
strated that using nanospray infusion MS, the need for normaliza-
tion is minimized.29 In the present study, normalization was
performed by calculating the average XCMS integrated area for
six of the compounds that were kept constant between mixes A

and B and then dividing each feature area value in the separate
observations with this average. This method of normalization
resulted in a response factor matrix of the same size compared
to the original matrix, and the response factor matrix was
subsequently further processed. We chose to normalize with this
approach because averaging the responses of several spiked
components appearing over the entire chromatographic range
gave good results even for small differences (Figure 3) and could
be easily performed. However, as Table 3 indicates, we found that
normalization increased the number of spiked features that were
significant (i.e., p-values <0.05). Also shown in Table 3 are the
number of significant features (p <0.05) before and after normal-
ization of XCMS data, as well as the number of significant features
observed after reintegration of the raw data, before and after
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Figure 2. (A) S/N for the spiked compounds. Black and white bars
are S/N measured with UPLC and HPLC, respectively. Error bars
illustrate standard deviation (n ) 5). (B) Extracted ion chromatograms
(EIC) and spectra for selected spiked compounds. The EICs are
shown over 1 min. Asterix indicates the [M + Na]+ of mifepristone,
which was significant using UPLC.

Table 2. Comparison between UPLC and HPLC

fraction (%) of features

with RSD
< 5%

with 5% <
RSD < 25%

with RSD
> 25%

separation and
gradient (min)

total
features
found

spiked
features
founda

features
from
BSAb

retention
time

corrnc (s)
non-

normd norme
non-

normd norme
non-

normd norme

UPLC-30 2709 17 585 1.8 ( 2.0 6.9 25.2 84.1 64.4 9.0 10.4
HPLC-30 2125 17 494 10.1 ( 21.6 5.8 8.3 83.1 82.1 11.1 9.6
UPLC-10 2034 16 494 1.7 ( 1.7 51.0 52.1 47.0 45.8 2.0 2.1
HPLC-10 1619 16 501 2.9 ( 4.2 43.0 41.6 53.2 54.8 3.8 3.6

a Serum spiked with mixture A. b Significance cutoff at p <0.01. c Average of observed [maximum - minimum] retention time for each feature
before correction ( standard deviation. d Feature areas as obtained by XCMS without normalization (5 observations/feature). e Feature areas as
obtained by XCMS with normalization (5 observations/feature) (see Experimental Section).
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normalization. As noted in Table 3, the normalization initially
caused an increase in the number of false positives. However, a
large reduction of false positives was achieved when the data were
reintegrated and renormalized. The RSD distribution was kept
fairly constant after normalization except for UPLC 30 min, where
a shift toward smaller RSD values was noted (Table 2). This might
reflect better chromatographic peak shapes, which potentially
could be integrated more coherently and subsequently better-
normalized. In Figure 3, a representative example of the effect of
initial normalization on the XCMS output is shown for a feature
that represents a compound (Mifepristone) that was increased
20% between (A) and (B). The feature M430T608 (Mifepristone)
becomes significant only after normalization. An interesting aspect
of our data processing protocol is that the known differences first
detected as features by XCMS remained throughout the procedure
whereas the number of false positives was reduced (Table 3). The
initial increase of significant features is reduced when subjected
to reintegration of the original data. After renormalization against
the average integrated area for the same six standards previously
used, there is again an increase in the number of false positives.
But in all cases, more of the spiked differences are found after
renormalization. The largest amounts of spiked compounds paired
with the smallest amount of false positives are found in the case

of running UPLC with the longer gradient (30 min). This
observation makes UPLC a good choice for metabolomics.

Figure 3. Effect of normalization. The top graph displays areas for
feature M430T608 (Mifepristone) as integrated by XCMS. Letters A
and B and the numbers correspond to the injection replicates of the
respective spiking mixture. The bottom graph shows the normalized
area values for the same feature. The concentration of mifepristone
is increased 20% in mixture B (the dashed bars); see Table 1 for
details.

Table 3. Number of Features, Total and Spiked, above Significance Cutoff (p <0.05) as a Function of Normalization
and Reintegration

XCMS before
normalization

XCMS after
normalization

integrated before
normalization

integrated after
normalizationseparation and

gradient (min) total spiked total spiked total spiked total spiked
false

positivesa

UPLC-30 41 6 70 8 9 6 17 8 9
HPLC-30 19 4 26 6 4 8 13 5 8
UPLC-10 77 6 183 8 15 7 31 8 23
HPLC-10 222 7 138 8 21 7 46 8 38

a False positives: the t-test rejected null-hypothesis that was valid; i.e., the t-test incorrectly reports that it has found a positive result where
none really exists.

Table 4. Concentration and Area Ratios for Spiked Features Obtained through XCMS, Manufacturer’s Software, and
the Described Protocol for Normalization and Reintegrationa

compound
feature name

(m/z - s) [B]/[A]
XCMS raw
area B/A

integration
raw area B/A

full protocol
area B/A

tacrine M199T261 0.8 0.59 0.51 0.54
prednisone M381T508 0 0.19 0.04 0.01
propafenone M342T615 0 0.08 0.00 0.00
bis tacrine M247T580 1.5 1.73 1.85 1.92
haloperidol M376T550 1.5 1.25 1.34 1.40
nicotinic acid M124T39 0.5 0.62 0.59 0.62
mifepristone M430T608 1.2 1.11 1.13 1.18
sulpiride M342T131 0.8 0.85 0.84 0.88
tenoxicam ndb 0.5 ndb 0.89 ndb

piroxicam M332T550 1.2 1.07 1.07 no diffc
phenylalanine 2H5 M171T76 1 0.99 0.97 no diffd
atenolol M267T117 1 0.84 0.82 no diffd
caffeine M195T193 1 1.03 1.00 no diffd
tetracycline M445T274 1 0.97 0.94 no diffd
chlorotetracycline M479T378 1 1.04 1.07 no diffd
propranolol M260T471 1 0.91 0.89 no diffd
verapamil M455T633 1 1.04 1.05 no diffd
ketoprofen ndb 1 ndb 0.95 no diffd
oleamide M282T1419 1 1.02 1.01 no diffd

a Data obtained with UPLC 30-min gradient. b Feature not detected by XCMS. c Feature detected by XCMS but no significant difference (p>0.05).
d Feature spiked at same concentration in A and B, not detected as a difference.
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Identified Differences. We performed a detailed trace of the
fate of the spiked compounds in the UPLC 30-min experiment
(Table 4). From these data, we concluded that XCMS preserves
the aspect ratio of data as well as the manufacturer’s software in
the integration of raw data. The final area ratios reported obtained
by XCMS and reintegration represented accurately the actual
differences between (A) and (B). The final result of the entire
processing protocol is displayed in Table 5. The fact that tacrine
(concentration reduced by only 20%) gave the lowest p-value
compared to prednisone and propafenone (both subjected to
complete removal) illustrates that factors such as chromatography
and S/N (Figure 2A) would be reflected in smaller standard
deviations and hence, lower p-values. Nine out of the 12 top
features identified as differences between (A) and (B) cor-
responded to spiked alterations when ranked according to p-value.
For instance, the feature M324T615 is a source fragment from
propafenone and the feature M429T1665 is found to be an actual
difference with all separation setups. The feature M429T1665,
however, is not a spiked component and does not originate from
column bleed. It is also not a contaminant from any of the
standards as it was not detected when standards were run
individually. The spiked but nonchanged compounds atenolol and
verapamil also appeared as false positives. The remaining hits in
Table 5, i.e., false positives 1-5, were manually inspected in the
original data. They all represented real chromatographic peaks.

If a significance criterion is set to a lower p-value, some of these
features would disappear together with some of the spiked
compounds present only at a 20% concentration difference. This
reflects a general problem with detecting differences in relative
concentration levels that approximate the precision limit of the
analytical protocol. An estimation of the analytical precision is
shown in Table 2. A majority of the features shows an RSD in the
range of 5-25%, and hence, this is a theoretical limit for detection
of differences.

To address the issue of correcting for the occurrence of false
positives, multiple test correction strategies can be used. These
p-value correction calculations adjust the individual p-value for each
feature to keep the overall error rate (or false positive rate) to
less than, or equal to, the specified p-value cutoff. For example,
the false discovery rate30-32 has been helpful for setting p-value
thresholds in gene expression studies. A more stringent correction
is the use of Bonferroni multiple test correction, where the
corrected p-value equals the initial p-value times the number of
observed features.

CONCLUSION
The quantitative comparison of sample classes in a nontargeted

fashion represents a challenging problem in metabolomics and
proteomics.5,8,15,16,18 For the determination of significant differences
from multiple sample classes, the screening of features is best
obtained using data mining such as ANOVA, partial least-squares
projection, or latent structures discriminant analysis. Since all
variables are aligned over the observations, nonlinear alignment
offers preprocessing of the data that can be readily applied to these
types of computations, ultimately allowing for more accurate
quantitative analysis.

It is also evident that UPLC is a useful tool for LC-MS-based
metabolomics since more features were detected at a higher S/N,
which provides a better basis for peak finding, integration, and
further statistical evaluation. The proposed protocol using UPLC-
MS and XCMS with normalization/reintegration has been proven
to detect 8 out of 10 spiked differences, some only differing at a
relative concentration of 20%. Moreover, few false positives were
identified, and a list was generated that represented compounds
worthy of further identification efforts.
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Table 5. Resulting Table Displaying Differences
Significant at p <0.05 for UPLC 30-min Gradient

feature name
(m/z - s) p-value compound

M199T261 1.35 × 10-7 tacrine
M381T508 2.11 × 10-7 prednisone
M342T615 3.59 × 10-7 propafenone
M247T580 5.09 × 10-7 bis tacrine
M429T1665 6.94 × 10-6 unknown 1
M324T615 8.24 × 10-6 propafenonea

M267T117 1.9 × 10-5 atenolol
M376T550 1.93 × 10-5 haloperidol
M124T39 5.88 × 10-5 nicotinic acid
M455T633 0.0005 verapamil
M430T608 0.0012 mifepristone
M342T131 0.0016 sulpiride
M452T608 0.0033 false positive 1
M420T110 0.0102 false positive 2
M344T134 0.0177 false positive 3
M671T1636 0.0209 false positive 4
M217T31 0.0440 false positive 5

a In source fragment of propafenone.
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