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Abstract

Background: Metal-containing proteins comprise a diverse and sizable category within the proteomes of
organisms, ranging from proteins that use metals to catalyze reactions to proteins in which metals play key
structural roles. Unfortunately, reliably predicting that a protein will contain a specific metal from its amino acid
sequence is not currently possible. We recently developed a generally-applicable experimental technique for
finding metalloproteins on a genome-wide scale. Applying this metal-directed protein purification approach (ICP-
MS and MS/MS based) to the prototypical microbe Pyrococcus furiosus conclusively demonstrated the extent and
diversity of the uncharacterized portion of microbial metalloproteomes since a majority of the observed metal
peaks could not be assigned to known or predicted metalloproteins. However, even using this technique, it is not
technically feasible to purify to homogeneity all metalloproteins in an organism. In order to address these
limitations and complement the metal-directed protein purification, we developed a computational infrastructure
and statistical methodology to aid in the pursuit and identification of novel metalloproteins.

Results: We demonstrate that our methodology enables predictions of metal-protein interactions using an
experimental data set derived from a chromatography fractionation experiment in which 870 proteins and 10
metals were measured over 2,589 fractions. For each of the 10 metals, cobalt, iron, manganese, molybdenum,
nickel, lead, tungsten, uranium, vanadium, and zinc, clusters of proteins frequently occurring in metal peaks (of a
specific metal) within the fractionation space were defined. This resulted in predictions that there are from 5
undiscovered vanadium- to 13 undiscovered cobalt-containing proteins in Pyrococcus furiosus. Molybdenum and
nickel were chosen for additional assessment producing lists of genes predicted to encode metalloproteins or
metalloprotein subunits, 22 for nickel including seven from known nickel-proteins, and 20 for molybdenum
including two from known molybdo-proteins. The uncharacterized proteins are prime candidates for metal-based
purification or recombinant approaches to validate these predictions.

Conclusions: We conclude that the largely uncharacterized extent of native metalloproteomes can be revealed
through analysis of the co-occurrence of metals and proteins across a fractionation space. This can significantly
impact our understanding of metallobiochemistry, disease mechanisms, and metal toxicity, with implications for
bioremediation, medicine and other fields.
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Background
Metallomics is an emerging field that seeks to compre-
hensively characterize the role of metals in organisms
[1]. As with any new field, unique challenges have been
encountered in terms of experimental methodologies
and data analysis. The essential role metals play in biol-
ogy has long been appreciated, but the complete metal-
lome of any organism has yet to be characterized. It is
estimated that around a third of all proteins in an
organism require a metal partner [2]. While it is possi-
ble to predict that certain proteins contain a metal [3],
there are fundamental limitations to all current compu-
tational methods in comprehensively describing the
metalloproteome of any organism. Many current meth-
ods rely on sequence motifs that in turn depend on the
existence of a sufficiently sized set of previously anno-
tated homologous proteins, a problem further com-
pounded by the diversity of metal-binding sites across
organisms as well as within a single organism [4]. It is
also well known that heterologous protein expression
can result in the production of proteins incorporating
metals that are not natively incorporated [5]. In addi-
tion, while certain proteins and protein families are
known to bind a variety of metals and are annotated
accordingly, many are annotated as binding a single
metal based on limited evidence.
It was shown recently [6] that the set of metals known

to interact with proteins in vivo is a significant underesti-
mate of the true extent and diversity of the metallopro-
teome. The approach developed used metal-directed
protein purification relying on inductively coupled
plasma mass spectrometry (ICP-MS) and tandem mass
spectrometry (MS/MS) and revealed that a prototypical
microbe, Pyrococcus furiosus, takes up 21 of 53 metals
measured in its growth medium, 18 of which are present
in macromolecular complexes. These results are in stark
contrast to the five metals that had previously been iden-
tified in proteins individually purified from the same
organism. Further, of the 343 metal peaks found across
the fractions from a second level of chromatography frac-
tionation (for the 10 metals that were detected), almost
half (158) contained no known or predicted metallopro-
tein corresponding to that particular metal [6]. The puri-
fication of eight of these metal peaks resulted in the
identification of novel metalloproteins, or proteins con-
taining unexpected metal ions [6]. Unfortunately, this
method has two major limitations. Firstly, given the large
number (158) of unassigned metal peaks and difficulty in
purifying a single protein, it is impractical to purify a sig-
nificant portion of these novel metalloproteins. Secondly,
it is not technically feasible to natively purify proteins of
very low abundance over several chromatographic steps.
Herein is described a computational infrastructure and

analytical methodology developed to both aid in the

pursuit of novel metalloproteins [7] as well as to predict
which proteins observed via MS/MS during this fractio-
nation are likely to be metalloproteins without requiring
purification to homogeneity. This required the develop-
ment of a database, an Online Analytical Processing
(OLAP) cube and InterPro-Metal (IPM) automated
metal domain identification methods (directly support-
ing the pursuit of novel metalloproteins), as well as a
Global Metal Protein Association (GMPA) analysis
(enabling the prediction of metal-protein associations
without complete purification). Given the essential bio-
logical role of metals, the discovery of novel metallopro-
teins has a multitude of implications in a variety of
fields [1,8]. Moreover, the computational infrastructure
and methods described can be applied to any form of
biomass of interest from tissues to microbes to identify
potential metalloprotein targets for experimental charac-
terization. Most importantly, this analysis allows the dis-
covery of low abundance metalloproteins without
radioisotope labeling, which have eluded other methods
[9,10] but which nonetheless may occupy key roles in
essential biological pathways.

Methods
Experimental design
The experimental data set utilized in this study is an
expanded version of the data set described in [7]. Briefly,
native biomass of the hyperthermophilic archaeon Pyro-
coccus furiosus was fractionated anaerobically through
multiple non-denaturing chromatography steps utilizing
multiple column chemistries. The resulting 2,589 frac-
tions were analyzed by ICP-MS to identify metals, and
by MS/MS to identify proteins (primarily high-through-
put MS/MS in this study). The MS/MS data were fil-
tered such that the false discovery rate was less than 1%,
as described in [7] and only proteins identified by Mas-
cot with two or more peptides were considered in the
current bioinformatics based study. The use of non-
denaturing native chromatography, ICP-MS and MS/MS
captures the co-occurrence of metals and proteins in
their native form, and enabled a metal-based purification
strategy, in contrast to conventional enzyme assay
guided protein purification [6]. While this metal-based
separation was used to purify a number of metallopro-
teins to homogeneity [6], the wealth of metal and pro-
tein data collected for proteins that were not explicitly
targeted for direct purification provided an additional
opportunity (applying data analysis techniques) to iden-
tify proteins that are likely to contain one or more
metals in their native form.

Data infrastructure
A relational database was constructed using Microsoft
SQL Server 2005 to store the data used in this study.
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The database consists of three principal modules: a pro-
cedural (fractionation) module, a metal data (ICP-MS)
module, and a protein data (MS/MS) module. The frac-
tionation module was designed to store the procedural
information used in each of the separation steps carried
out during the multi-level column fractionation (allow-
ing reconstruction of the complete experimental path-
way). These multi-level hierarchical relationships
between fractions were queried using recursive common
table expressions (CTE). The metal data module was
designed to store both procedural data and replicate
metal concentration data for each sample and metal
analyzed using ICPMS. This module also stores the
peak assignments determined by manual inspection.
Finally, the protein module stores data for each peptide
identified by MS/MS, its protein source and the corre-
sponding ORF, and details related to the MS/MS run
and Mascot search as imported from Mascot XML
result files. All fractions and samples (from fractions)
collected were assigned unique IDs and labeled with
2 D data matrix barcodes to facilitate sample tracking.
This ensured the simple and reliable association of the
data contained in all three principal modules within the
context of the experimental hierarchy.
The relational database contains 2,589 records corre-

sponding to fractions (the fractionation module)
obtained from the chromatographic separation in
which 1,026 proteins (the protein module) were identi-
fied by MS/MS. Of these 1,026 proteins (corresponding
to 135,989 peptide hit records in the database), 870
were identified with 2 or more peptides (125,777 pep-
tide hit records) and were used in statistical scoring of
metal association (GMPA scores, see below). Each of
these fractions has associated metal concentration data
generated by ICP-MS analysis for multiple metals
depending in part on what metals were relevant to the
goals of a given separation step (up to 53 with 78,514
overall metal concentration records; the metal mod-
ule). An Online Analytical Processing (OLAP) cube
(Figure 1, middle right) was constructed on top of the
relational database using Microsoft SQL Server 2005’s
Analysis Services. The cube enabled efficient prepro-
cessing of significant amounts of aggregate data (e.g.
sums, averages, etc.) and at the same time enabled
convenient data slicing across multiple dimensions of
experimental data in real-time (e.g. queries as to the
number of proteins and metals detected in the same
fraction) [11]. OLAP is commonly used in the business
analysis field but has not been widely exploited in
scientific fields. However, OLAP is particularly well
suited to the types of analyses presented herein given
the hierarchical nature of the data set and the aggre-
gate nature of queries utilized in this study to investi-
gate experimental outcomes (e.g. are we purifying a

protein-i.e. are metal/protein ratios improving?).
A more detailed description of data infrastructure is
given in the supplementary material (Additional Files
1, 2, 3, 4, 5). For the 870 proteins with GMPA scores,
metal concentrations and numbers of peptides in the
column fractions containing those proteins (designated
by ORF number) are available at http://enigma.bmb.
uga.edu/impact.

Bioinformatic metalloprotein prediction-InterPro-Metal
(IPM) automated metal domain analysis
The set of known metalloproteins that have been pre-
viously purified and characterized from P. furiosus by
conventional chromatographic methods consists of
only 23 proteins (encoded by 39 genes). Each contains
one or more of Co, Fe, Ni, W and/or Zn atoms [6].
Although the utility of bioinformatic predictions is lim-
ited, such predictions can be used to identify homologs
of more extensively characterized metalloproteins and
serve as a starting point for assigning proteins to the
observed metal peaks. The Integrated Resource of Pro-
tein Domains and Functional Sites (InterPro) [12] was
used to predict known metal associated domains
encoded in the genome of P. furiosus. InterPro inte-
grates multiple popular protein feature databases, and
provides the Iprscan utility for searching protein
sequence queries against these databases. The genome
was searched using this utility and the resulting
matches of proteins to InterPro entries were stored in
a relational database (protein-InterPro data). The
description of each InterPro entry, including name,
abstract and publication list, is available in a down-
loadable XML file ftp://ftp.ebi.ac.uk/pub/databases/
interpro/interpro.xml.gz. This file was parsed and
inserted into a corresponding relational database.
A number of regular expression patterns relating to
metal ions, metal cofactors and metal binding domains
were used to search the text of each InterPro entry
description to classify the entries which potentially
involve specific metals (metal-InterPro data). Those
metal-InterPro entries that had hits in the P. furiosus
genome were evaluated manually for quality and
assigned a subjective score. In some cases, keyword
hits were not deemed to be indicative of a potential
association of the given domain with a given metal, for
instance an abstract for a particular subfamily of an
enzyme may include additional information on other
subfamilies which use alternate metals. Such spurious
hits were assigned a score of 0 while metals with evi-
dence of association with the given domain were
assigned a positive score. All hits with nonzero scores
were considered as potentially metal associated
domains in subsequent analyses. The protein-InterPro
data and metal-InterPro data were joined to determine
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which P. furiosus proteins had associations with speci-
fic metals and this subsequently will be referred to as
the InterPro-Metal (IPM) database or InterPro-Metal
analysis. These domain-based predictions were incor-
porated into the relational database and OLAP cube
(Figure 1) to aid in the identification of novel metallo-
proteins and proteins for which the metal prediction
and observed metal associations differ.

Data driven metalloprotein prediction-Global Metal
Protein Association (GMPA) analysis
The previously described infrastructure enables effi-
cient querying of the data along the following dimen-
sions: protein identity, metal motif prediction for
identified proteins, total protein concentration and
metal concentration across the entire experimental
data set. This database enables an evaluation of the
global association of metals with proteins across the

entire observed space. The heterogeneity of the utilized
data, with ICP-MS yielding quantitative metal concen-
trations and the MS/MS results indicating the presence
or absence of proteins (with peptide counts providing
only local semi-quantitative comparison), dictated the
use of methods which are less reliant on quantitative
agreement between these data sets. Metal peak fraction
regions were defined and entered into the database
manually based roughly on the presence of at least two
fractions in which the concentrations for a given metal
(as indicated by two independent ICP-MS technical
replicates) were substantially above the surrounding
data for that metal. A hypergeometric distribution-
based statistic that only considers the presence of pro-
teins in these metal peaks instead of similarity of the
shape or size of the metal and protein peaks (e.g. pep-
tide counts of a given protein across a relatively con-
tiguous set of fractions) was utilized. This statistic, the

Figure 1 Experimental and computational overview. Below the dashed line is a schematic overview of the framework: all of the tools,
databases and methods developed and utilized in this effort. Subsequent figures focus on the methods and calculations in the bioinformatics
category.
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“Global Metal Protein Association score” (GMPA
score, G(pi,mj)) is defined as:
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where f = the number of fractions in the data set, fm j =

the number of fractions inside of peaks of metal j in the
data set, fpi

= the number of fractions in which protein
i was observed, and fp mi j, = the number of fractions in
which protein i was observed that are also contained
within peaks of metal j. This statistic gives the probability
of at least fp mi j, fractions out of the fpi

fractions in
which protein i is found occurring within peaks of metal
j assuming that the fpi

fractions were distributed ran-
domly (with uniform probability) across the fraction space
(Figure 2). The GMPA score was computed for all data
sets we examined using the phyper function in R-2.10.1
[13] according to the formula above. The lower the score
for a given protein/metal combination, the less likely it is
that the protein and metal co-occur in the chromato-
graphic fraction space by chance.
The frequency of observation plays a large role in the

GMPA score, so an exponential significance curve
through the GMPA score/occurrences space was intro-
duced dividing it into a set of proteins with substantial
evidence for metal association (lower GMPA scores,
fewer fraction occurrences) and a set without as much
evidence (higher GMPA scores, more fraction occur-
rences). This provides an initial filtering step for our
current real-world data set (Figure 3). For metals signifi-
cantly represented in the set of known metalloproteins
(Fe, Ni, and W), the significance curve was generally set
using these known references. For metals present in few
or no known metalloprotein(s), the curve was extrapo-
lated from the sets with sufficient known metallopro-
teins (Additional File 6). This extrapolation was based
on the ratios between the exponent of an exponential
regression curve calculated over all proteins through the
GMPA score/occurrences space (Figure 3) and the sig-
nificance curves chosen to capture all known metallo-
proteins that could reasonably be captured for Fe, Ni
and W. Typically, an absolute GMPA score cut-off was
employed after significance curve filtering to remove
proteins that occurred in fewer than approximately 10
fractions from further analysis since it is unlikely that
anything can be determined from our data with any
confidence for such proteins.

To further organize the space of potential metallopro-
teins and to estimate the number of metalloproteins
that could reasonably be expected from among the set
of GMPA score filtered proteins for each metal, hier-
archical clustering was applied. Hierarchical clustering
organizes the elements of a set into a tree based on
similarity (co-occurrence of proteins in fractions in this
case). The resulting tree can facilitate the partitioning of
the original set into sub-tree “clusters” capturing natural
divisions in the data. This technique is particularly use-
ful when the number of natural groups that might exist
in the data is not known a priori. Ward’s method of
hierarchical clustering, which is variance-minimizing,
along with the Euclidean metric and the Dynamic Tree

PF1587 Mo peak FRs 187

PF1587 FRs 235

Total Mo peak FRs 1,030

Total FRs 2,589

aggregate over entire dataset (OLAP)

A

B

C

2nd level column excerpt

Figure 2 GMPA score (Global Metal Protein Association)
Calculation. A, B and C illustrate the calculation with data for pi =
PF1587 and mj = Mo, arrows represent generic steps in the
calculation. A) Peptide counts for each protein (per fraction) are
reduced to Boolean values (present/not present-shown as blue/
white cells respectively). Whether a fraction is part of a metal peak
or not is already a Boolean value (green/red cells). B) The “present/
not present” values are counted across all fractions in the data set.
C) The GMPA score is calculated from these values using the
hypergeometric distribution and is roughly a p-value: how likely is a
given protein to have been seen in metal peak fractions as many
times as it was (or more) assuming an equal likelihood for the
protein to have been observed in any fraction and given the
number of metal peak fractions, protein fractions, and total fractions.
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Cut package for R [14] were found to give useful self-
contained clusters. The cutreeHybrid function of the
Dynamic Tree Cut package was used to analyze the
trees generated for each metal (Figure 4, Additional
Files 7 and 8-graphics produced in part using slightly
modified versions of functions from [15]). The para-
meters passed to this function were tuned for Mo and
Ni so that within the selected clusters there were clear
“core” regions (composed of fractions with ≥50% of pro-
teins in the cluster observed) while “core” region overlap
was minimal between pairs of clusters. Low overlap
between clusters in metal peak regions, with which core
regions typically coincide, makes it likely that each clus-
ter should contain at least one metalloprotein in order

to explain the metal peak data-i.e. that the dimensional-
ity reduction achieved in the clusterings is reasonable.
Approximate minima required to cover all peaks were
also calculated using the greedy algorithm approach to
the set cover problem [16] and were found to be consis-
tent with the results of clustering. The parameters
found for Mo and Ni were then applied for all metals.

Results and Discussion
The computational framework that was developed con-
sisted of a database, an Online Analytical Processing
(OLAP) cube, InterPro-Metal (IPM) automated metal
domain identification and Global Metal Protein Associa-
tion (GMPA) analysis. This complemented and
enhanced our recent effort to elucidate the metallopro-
teome of P. furiosus and to identify novel metallopro-
teins [6]. The GMPA analysis in particular was used to
provide estimates of the numbers of metalloproteins
that could be expected proteome-wide and a narrowed
list of candidates (based on ICP-MS and MS/MS data)
at various stages of the column chromatography fractio-
nation, culminating in our predictions at the conclusion
of the study that the numbers of undiscovered metal
containing proteins in P. furiosus range from approxi-
mately 5 for vanadium up to as many as 13 for cobalt.
Validation of these predictions is provided by the overall
success of the GMPA analysis in categorizing known
metalloproteins from P. furiosus, the establishment of
lower bounds on the numbers of proteins required to
explain all metal peaks seen during the fractionation,
the fact that the predictions lie within reasonable ranges
in the context of literature (where up to a third of pro-
teins are expected to contain or be involved with metals
in various ways with the caveat that the majority are
likely to be involved with Mg) [2,17,18] and considering
the effect of dynamic association/adventitious metal
binding [19].
In order to determine how much of the information

contained in our data set remains uncaptured by the
GMPA analysis, nickel (Ni) and molybdenum (Mo) were
chosen for manual evaluation using the GMPA predictions
as a starting point. Of the 870 proteins identified by MS/
MS with two or more peptides, 153 and 119 were found
to be significantly associated with Ni and Mo respectively,
upon clustering yielding predictions of 13 and 10 total Ni-
and Mo-proteins in the proteome of P. furiosus. The local
semi-quantitative MS/MS peptide hit data for each of the
proteins clustered was then manually compared to the
local metal concentration data using our data explorer
(Figure 1). This step excluded an additional 131 and 99
proteins producing top candidates lists of 22 and 20 pro-
teins that are most likely to contain Ni and Mo respec-
tively. These lists were then analyzed more extensively
through bioinformatic analyses and literature searches.

Mo

Ni

significant region

significant region

Figure 3 Protein selection using GMPA score significance curve
criterion. Scatterplots (per metal) of the GMPA scores versus
number of fraction occurrences for all proteins. The green/orange
lines are exponential “significance” curves (plotted on a logarithmic
scale) and proteins below are considered significant and selected
for clustering (green regions and cyan points). The Ni significance
curve (green) was based on occurrences of known Ni-proteins (red
points) and the Mo significance curve (orange) was extrapolated
from the relationships between the significance curves and
exponential regression curves (through all points-the black lines) on
average across all metals with known metalloproteins. Typically, this
step removes an additional 20-35 proteins beyond what would be
removed using the regression curves themselves.
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We will first describe the results obtained at the conclu-
sion of our experimental study and then discuss the bioin-
formatics of the lists of predicted Ni- and Mo-proteins,
concluding with the limitations inherent in this study.

Bioinformatic metalloprotein prediction-InterPro-Metal
(IPM) automated metal domain analysis predictions
Of the 2,065 annotated opening reading frames (ORFs) in
the RefSeq annotation of the P. furiosus genome [20], 376
were found to have matches to metal-associated InterPro
entries. These included all of the 23 previously known
metalloproteins [6]. Of the 376, 221 were detected by
MS/MS with 2 or more peptides, 43 of which had
matches to multiple metals, either from matches to mul-
tiple InterPro entries, or to a single InterPro entry that
lists potential associations with multiple metals. Consis-
tent with expectation, the majority of the P. furiosus pro-
teins with metal-related InterPro hits were predicted to
be associated with Fe or Zn, with fewer Mn, Mo, Co, W
and Ni predictions (Figure 5) [4,17]. There were no
predictions of association with lead or uranium other
than transport proteins whose InterPro descriptions may
list many metal ions. The observation of a metal peak
in a fraction in which no predicted metalloprotein was
identified shows that one of the proteins identified is a
completely novel metalloprotein, or one which uses a
metal other than that expected by its annotation [6].

An unexpectedly large number-158 of the 353 metal
peaks detected for the second level of column fractiona-
tion-were found in the data set.

Data driven metalloprotein prediction-Global Metal
Protein Association (GMPA) analysis predictions
The 870 proteins identified by MS/MS with two or more
peptides were assigned GMPA scores and partitioned

Cluster by co-occurrence in fractions

PF0056 SHII SHI PF0086

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4 Hierarchical clustering of GMPA score criterion significant nickel associated proteins. Potential nickel proteins clustered based
on co-occurrence in fractions using Ward’s method. The grid at top contains excerpts from the data set selected to give a rough sense of
protein co-occurrence within fractions and its effect on the resulting clustering. The numbered boxes at the bottom indicate the partitioning of
the overall clustering into self-contained clusters as determined by cutreeHybrid (indicated by colors in supplementary material clusterings).
Clusters containing known Ni-proteins are highlighted at the bottom illustrating the clustering together of subunits of known nickel-proteins and
clustering apart of distinct Ni-proteins (SHI: soluble hydrogenase I PF0891-PF0894, SHII: soluble hydrogenase II PF1329-PF1332).
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Figure 5 IPM predicted metalloproteins identified by MS/MS.
Out of the 870 proteins identified with two or more peptides, 221
were predicted to be metalloproteins. The majority were predicted
to contain Fe or Zn with fewer predicted to contain Mn, Mo, Co, W
and Ni.
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into significant and insignificant regions as described in
the methodology section. The number of proteins
deemed significant ranged from 45 for V to 153 for Ni
(Table 1). The proteins falling in the significant regions
for each metal were then hierarchically clustered by
co-occurrence in fractions, with the number of clusters
ranging from 5 for V to 16 for Co (Table 1). Each of these
clusters is assumed to contain at least one metalloprotein
giving rise to the observed metal peaks (see Methods).
A total of 23 metalloproteins are known for P. furiosus
from previous studies [6], and the coverage of the corre-
sponding clusterings by these standards, together with the
metalloproteins discovered by metal-directed purification
[6], is summarized in Table 1. As a specific example of the
data underlying each row of this table, Figure 4 shows the
13 clusters into which the 153 significant (by GMPA
score) Ni targets fell. The two known Ni-containing
enzymes, the soluble hydrogenases, lie in distinct clusters,
as illustrated in Figure 4.

Nickel- and Molybdo-protein evaluation
Nickel and molybdenum were selected for further
detailed analysis primarily using a data explorer devel-
oped in-house leveraging the speed of the OLAP cube
(Figure 1). There are 12 genes that encode subunits of
known Ni-containing proteins in P. furiosus. A total of
seven of the 12 proteins encoded by these genes were
detected by MS/MS analyses including five genes that
encode the two multi-subunit Ni-containing soluble
hydrogenases (I and II) of P. furiosus. These seven genes
represent a set of positive controls for evaluation of the
analysis. Prior to the metal-targeted comprehensive pro-
tein purification [6], P. furiosus was not known to have
any Mo-proteins, so all proteins identified by that

analysis represent novel Mo-proteins in this organism.
For Ni, out of 870 proteins observed by MS/MS in at
least one fraction of the fraction-space used for this ana-
lysis, 153 proteins were selected in the initial GMPA
score significance curve screening. The parameters for
the significance curve for Ni were chosen directly based
on the known Ni-proteins such that the significance
curve did not filter out any of the subunits of the
Ni-containing soluble hydrogenase I (PF0891-PF0894)
and only filtered out one of the subunits of the Ni-con-
taining soluble hydrogenase II (PF1330). This is essen-
tially unavoidable given that PF1330 was found in
relatively few (16) fractions. From the 153 proteins, 13
reasonably distinct clusters were defined after hierarchi-
cal clustering and each was manually evaluated (Table 2,
Additional File 9). Seven of the clusters were found to
contain proteins exhibiting local agreement of MS/MS
data to the Ni ICP-MS data and 22 proteins or subunits
of proteins were found in total (Table 2). Five of the
22 best candidates for Ni are in fact subunits of pre-
viously known Ni-protein complexes (Table 2) providing
validation of this approach. An additional 2 of the 22
candidate Ni-proteins were very recently taken to purity
or partial purity (PF0056 and PF0086) by the metal-
directed purification and their assignment was con-
firmed [6]. This leaves 15 potential novel Ni-containing
proteins on which to carry out further experiments.
For Mo, out of 870 proteins observed by MS/MS in at

least one fraction of the fraction-space used for this analy-
sis, 119 proteins were selected in the initial GMPA score
significance curve screening. The significance curve for
Mo was selected (as described in Methods) by extrapola-
tion based on the significance curves chosen for metals
with known metalloproteins. From the 119 proteins,

Table 1 GMPA Analysis Clustering and Coverage of Known Metalloproteins
Metal Known metalloprotein subunits Proteins

Clustered
Clusters

Total Observed Met GMPA
significance
criterion

Total With known
metalloproteins

Co 5 5 3 139 16 3

Fe 35(20) 35 19 148 15 8

Mn 0 0 0 73 7 0

Mo 2 2 1 119 10 1

Ni 12(5) 12 9 153 13 4

Pb 0 0 0 90 9 0

U 0 0 0 76 7 0

V 0 0 0 45 5 0

W 5 5 4 136 11 4

Zn 5 5 1 116 9 1

Some proteins consist of multiple subunits, the number of holoenzymes are given in parentheses. Some proteins contain multiple metals and factor into multiple
rows. For full clusters, refer to supplementary material.

Lancaster et al. BMC Bioinformatics 2011, 12:64
http://www.biomedcentral.com/1471-2105/12/64

Page 8 of 12



10 clusters were defined after hierarchical clustering and
each cluster was manually evaluated. Six of the clusters
were found to contain proteins exhibiting local agreement
of MS/MS data to the Mo ICP-MS data and 12 such
proteins were found in total (Table 3, Additional File 9).
A novel Mo-protein (PF1587) was purified by the metal-
based chromatography method from which the data set
was derived [6] and this is identified by the GMPA analysis
as a likely Mo-protein. This nicely demonstrates the effec-
tiveness of the method given sufficient observation. Finally,
comparing the results of the IPM analysis to the manually
evaluated GMPA analysis derived results, among the
22 manually evaluated targets deemed to be likely
Ni-proteins, only 3 had a Ni IPM match with 10 additional
proteins having Co, Fe, Mn and Zn matches. Of the
20 manually evaluated targets deemed to be likely
Mo-proteins, only 1 had a Mo IPM match.

Bioinformatic analyses of predicted Ni- and Mo-proteins
As discussed above, 7 of the 22 genes listed in Table 2
encode proteins or subunits of proteins which have
been shown to contain Ni ions in P. furiosus. This

includes subunits of soluble hydrogenase I (SHI) and
soluble hydrogenase 2 (SHII) grouped in clusters 7 and
8 respectively. In addition, PF0615 in cluster 13 is anno-
tated as a hypA protein, which is implicated in Ni inser-
tion in the hydrogenases. The structure of a hypA
homolog from Thermococcus kodakaraensis has been
solved and its Ni-binding site described [21]. This
demonstrates that cluster 13 has at least two Ni-binding
proteins that frequently co-occur in the fractionation
space. Of the five ORFs in Table 2 with homologs
whose crystal structures have been solved bound to
metals other than Ni, three are now known to bind Ni
(PF0056 and PF0086) in P. furiosus or are known to
have a Ni-binding site (PF0615). In particular PF0086
has been shown to bind Ni [6], but its homolog from
the closely related Pyrococcus horikoshii (PDB 2E18) was
expressed recombinantly and crystallized in a Zn-bound
form. This illustrates the flexibility of metal binding
domains [22], and their ability to bind biologically incor-
rect metals when expressed heterologously [23]. The
two remaining ORFs with non-Ni homolog crystal struc-
tures are PF1664, which contains the cysteines that bind

Table 2 Manually Evaluated Nickel Protein Candidates
Cluster
number

ORF Annotation Crystal
structure
homolog

Metal
In

structure

IPM
prediction

2 PF0144 Aldolase-type TIM barrel Fe

2 PF1881 Alba archaeal DNA/RNA-binding protein 2Z7C

3 PF0038 Beta-lactamase-like glyoxalase II family member Zn

4 PF1916 Glycosyl transferase, family 2

4 PF1987 Conserved hypothetical protein

5 PF0056 Carbohydrate binding protein 1VJ2 Mn Mn

5 PF0138 Uncharacterized rubrerythrin domain protein 2FZF Fe

6 PF1664 Phosphoribosyl-AMP cyclohydrolase 1ZPS Cd Zn

6 PF2038 Adenosylcobalamin biosynthesis 1G5T Mg Co

7 PF1329 Hydrogenase II beta Fe

7 PF1331 Hydrogenase II delta Fe

7 PF1332 Hydrogenase II alpha Fe,Ni

8 PF0891 Hydrogenase I beta Fe

8 PF0894 Hydrogenase I alpha Fe,Ni

8 PF1500 PRC-barrel-like

8 PF1529 Pyroxidine biosynthesis protein 2YZR

12 PF1401 Peptidyl-prolyl cis-trans isomerase

13 PF0086 Alanyl-tRNA synthetase, class IIc 2E1B Zn

13 PF0615 Hydrogenase expression/formation protein A 3A43 Zn Ni

13 PF1272 LamB/YcsF 1V6T

13 PF1684 Acetylglutamate kinase 2EGX

13 PF1861 Lysyl aminopeptidase 2PE3 Zn

Cluster number refers to hierarchical clustering with dynamic hybrid partitioning, see Figure 4 for explanation and supplementary tables 1-8 in Additional File 9
for complete cluster tables. Crystal structures obtained from PDB with sequence similarity >50%. ORF numbers in bold have been previously characterized in P.
furiosus, those in italics were characterized by metal-targeted purification.
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Zn (Cd in the crystal) in its homolog [24] and may be
involved in binding Ni in P. furiosus, and PF2038 with a
homolog that binds Mg-ATP. The only protein listed in
Table 2 that is likely not to contain Ni is PF1861. This
was previously purified from P. furiosus biomass and
contained Co and Zn but not Ni [25]. This leaves 13
proteins that are predicted to contain Ni. These proteins
have no known or conjecturable Ni associations based
on their sequences and are assumed to predominantly
contain a set of undiscovered Ni-binding sites. Finally, it
is worth pointing out that PF0056 is one of five ORFs
(PF0144, PF1987, PF0056, PF0138 and PF1500) anno-
tated as either conserved hypothetical or with only
domain/motif matches and has now been shown to bind
Ni [6].
In contrast to the case of Ni, the pool of known

molybdo-proteins in P. furiosus is small and far less can
be ascertained bioinformatically. In particular, the role
of Mo-proteins in P. furiosus is unclear, with only two
such metalloproteins having recently been identified [6].
Consequently, only two of 20 proteins in Table 3 have
either been shown to bind Mo (PF1587) or have an IPM
hit for Mo (PF0187). The other recently identified
Mo-protein that was purified from P. furiosus (PF1972)

was observed in only 17 chromatography fractions and
was rejected by the GMPA analysis, which depends on
sufficient levels of occurrence in the data set to establish
significance of metal-protein association. On the positive
side, many of the uncharacterized proteins contain resi-
dues that could be involved in Mo-binding (e.g. 14 of 20
contain at least one cysteine residue as is often involved
in Mo-pterin binding) [26-28], but given the extent and
complexity of typical molybdopterin binding interactions
and biochemistry [29] and the lack of knowledge of
Mo-binding in organisms closely related to P. furiosus,
we have not looked into this aspect further. On the
negative side, DNA polymerase (Mo cluster 9, Table 3),
which has been well studied in many different organ-
isms and is not known to bind or utilize Mo (although
it is not clear if this has been directly considered pre-
viously) was picked as a top candidate Mo-protein. This
illustrates that some of the targets that appear to reliably
co-occur with a metal may be coincidental, or the result
of interaction natively with additional proteins that are
not strictly required for their primary function. Interest-
ingly, four of the 20 predicted Mo-protein candidates
have annotations that include “domain of unknown
function.” The confirmation of Mo-binding, which has

Table 3 Manually Evaluated Molybdenum Protein Candidates
Cluster ORF Annotation Crystal

structure
homolog

Metal in
structure

IPM
Metal

1 PF0009 ThiF family protein 1JWB Zn

1 PF0187 Putative cofactor synthesis protein Fe,Mo,W

1 PF0668 YjgF-like protein 2DYY

1 PF1718 Wyosine base formation, Radical SAM 2YX0 Fe

1 PF1766 Cell division transporter FtsY 3DMD

2 PF1956 Fructose-1,6-bisphosphate aldolase class I 1OJX

3 PF1828 Protein of unknown function DUF1621

3 PF1886 Carbohydrate/purine kinase

4 PF0098 NAD+ synthase 2E18

4 PF0236 Phosphoribosyl pyrophosphokinase 1U9Y Mg

4 PF1401 Peptidyl-prolyl cis-trans isomerase 1IX5

4 PF1675 Asp/Glu/hydantoin racemase 2ZSK

4 PF1731 Signal recognition particle 54 3DM5

5 PF1538 Amidohydrolase 1 1P1M Ni

7 PF0523 Protein of unknown function DUF509 1ZD0 Mg

7 PF1222 Protein of unknown function DUF217

8 PF1587 Protein of unknown function DUF89 2G8L

9 PF0212 DNA polymerase, family B 2JGU Mn

9 PF0306 Translation factor, SUA5 type

9 PF0463 Phosphoglycolate phosphatase

Cluster number refers to hierarchical clustering with dynamic hybrid partitioning, see Figure 4 for explanation and supplementary tables 1-8 in Additional File 9
for complete cluster tables. Crystal structures obtained from PDB with sequence similarity >50%. ORF numbers in bold have been previously characterized in P.
furiosus, those in italics were characterized by metal-targeted purification.
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already occurred for PF1587 by metal-directed purifica-
tion, should provide an improved foundation for func-
tionally characterizing these conserved domains which
so far have been elusive [6].

Known limitations
We initially attempted to use standard correlation-based
statistical techniques such as principal component analy-
sis (PCA) and canonical correlation analysis (CCA) to
determine associations between metals and proteins
based on the experimental data that were available [6].
However, these efforts were hindered by the relatively
non-quantitative nature of the MS/MS data available
(lacking even spectral count information). Consequently,
the GMPA analysis method was developed which is less
reliant on quantitative agreement between these data
sets. Simulated data sets demonstrated the effectiveness
of GMPA scores alone given adequate separation
regardless of the amount of noise observed in the pep-
tide counts, but it was discovered that the metal-based
fractionation typically did not produce a comprehensive
enough data set containing an appropriate degree of
overall separation. For example, the experimental data
set is most consistent and comprehensive at the second
column level (termed C2 in [7]) and separation is still
relatively incomplete at this level. Consequently signifi-
cance cut-off curves and clustering were employed com-
pleting the overall GMPA analysis methodology. It is
likely that the predictive power of the methodology
could be greatly improved by utilizing a data set with a
more comprehensive fractionation across all levels,
through the use of more quantitative MS/MS techniques
[30-32] and more powerful statistical techniques (PCA/
CCA) that could then be applied more easily. This
methodology could also potentially be carried out in a
more automated fashion on an analytical scale to pro-
vide a rapid determination of the metalloproteins of any
organism.

Conclusions
We have presented a computational methodology that
can uncover probable metal-containing proteins using
data from a non-comprehensive native fractionation
coupled with metal and protein measurement using
ICP-MS and MS/MS. This methodology has identified a
number of candidate novel metalloproteins that are tar-
gets for future experimental verification. Application of
the method to simulated data sets indicates that addi-
tional predictive accuracy could be achieved through the
use of a more comprehensive fractionation. Our results
for each of the 10 metals examined in this study under-
score the unexplored complexity of metalloproteomes
and have broad implications for protein structure and
function as well as metal toxicity.

Additional material

Additional file 1: Data infrastructure additional details. A more
detailed description of the data infrastructure.

Additional file 2: Relational database schema figure. A diagram
illustrating the basic layout of the relational database.

Additional file 3: OLAP cube figure. A diagram illustrating the basic
connections between measure groups and dimensions in the OLAP cube.

Additional file 4: Relational database schema description.

Additional file 5: OLAP schema. The complete schema for the OLAP
cube as an XML based backup.

Additional file 6: Significance curves, function calls for clustering.
Significance curves and parameters used to generate all clusterings,
clusters.

Additional file 7: Cluster Diagrams. Tree diagrams of clusters. The
colors are used simply to distinguish the defined clusters.

Additional file 8: Cluster Tables. Supplementary tables 1-8 containing
complete cluster details.

Additional file 9: GMPA scores/occurrences tables. GMPA scores for
all metals and proteins studied. The number of fraction occurrences in
the data set is listed for each protein as well.
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