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ABSTRACT: Mass spectrometry-based untargeted metabolomics
often results in the observation of hundreds to thousands of
features that are differentially regulated between sample classes. A
major challenge in interpreting the data is distinguishing meta-
bolites that are causally associated with the phenotype of interest
from those that are unrelated but altered in downstream path-
ways as an effect. To facilitate this distinction, here we describe
new software called metaXCMS for performing second-order
(“meta”) analysis of untargetedmetabolomics data frommultiple
sample groups representing different models of the same pheno-
type. While the original version of XCMS was designed for the
direct comparison of two sample groups, metaXCMS enables
meta-analysis of an unlimited number of sample classes to
facilitate prioritization of the data and increase the probability of identifying metabolites causally related to the phenotype of interest.
metaXCMS is used to import XCMS results that are subsequently filtered, realigned, and ultimately compared to identify shared
metabolites that are up- or down-regulated across all sample groups. We demonstrate the software's utility by identifying histamine as a
metabolite that is commonly altered in three different models of pain. metaXCMS is freely available at http://metlin.scripps.edu/
metaxcms/.

Metabolites are small molecules within biological systems
that serve as the substrates and products of cellular reac-

tions. There is enormous structural diversity among metabolites
ranging from polar compounds to lipids and drug derivatives.
Untargeted metabolomics describes the process by which these
molecules are globally profiled without bias. With the use
of modern mass spectrometers interfaced with either gas or
liquid chromatography, tens of thousands of metabolic features
can typically be detected from cells, biofluids, and tissues.1,2 A
metabolomics feature represents a peak in the chromatogram
and is defined as a molecular entity with a uniquemass and reten-
tion time. Unbiased metabolomics is performed by first com-
prehensively identifying every feature within a sample group,
and then comparing the relative intensity of each of them among
different sample classes (e.g., healthy versus disease) for statis-
tically significant changes.

Over the course of the past 5 years, several software tools for
differential analysis of mass spectrometry-based metabolomics
data have been developed (e.g., XCMS,3,4 MZmine,5,6 andMath-
DAMP7). These programs identify features whose relative intensity
varies between sample groups and are therefore useful in screening
for biomarkers of disease. In addition, however, the identification of
dysregulated metabolites has been useful in making advances to our
understanding of fundamental biochemistry. For example, untar-
geted metabolomics programs have successfully been applied to

reveal new insights related to inborn errors of human metabolism,8

extremophile bacteria,9 viral pathogenesis,10 the gutmicrobiome,11,12

and stem cell differentiation.13 A major challenge in interrogating
complex biological phenomena at themetabolite level, however, is in
distinguishing dysregulatedpathways that are causally associatedwith
the phenotype of interest from those that are unrelated but altered as
a downstream effect. Knockout model organisms provide exciting
opportunities to study disease, but metabolomics data sets compar-
ing these organisms to wildtype controls are complicated by the
potentially large number of altered features causally unrelated to the
pathology. Examining more animal models of the same phenotype
increases the likelihood of identifying features associated with under-
lying disease pathology, but previous metabolomics software limits
this type of analysis in that only two sample groups can be compared.

It is important to emphasize that metabolomics programs
such as XCMS identify dysregulated features, not metabolites.
The process of identifying a feature as a metabolite requires
searching databases on the basis of accurate mass and compar-
ing the retention time and tandemmass spectrometry (MS/MS)
data to that of a model compound for structural confirmation.
Growing metabolite databases with advanced functionality have
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facilitated the procedure of metabolite identification,14-16 but it
is still a time-consuming and labor-intensive step of the meta-
bolomics workflow. Thus, data reduction is essential tomaximizing
the physiological relevancy obtained frommetabolomics experiments.
The challenge is implementing an intelligent methodology to
accomplish data reduction at the feature level prior to metabolite
identification.

An effective data reduction strategy used in other fields has been
performing second-order comparisons to identify shared distur-
bances among shared phenotypes. Such second-order analyses
require the input of multiple sample groups, which previously has
not been feasible with existing metabolomics programs. Here we
describe new untargeted metabolomics software that can be used
in conjunction with XCMS to perform second-order (“meta”)
analysis. Pairs of sample groups are first traditionally analyzed with
XCMS, and the output files from any number of pair comparisons
are then subsequently input into metaXCMS where they are
realigned, statistically evaluated, and compared for shared differ-
ences. This offers an important metabolomics data reduction tool
that has the potential to significantly decrease the number of
interesting features selected for subsequent metabolite identifica-
tion (Figure 1). metaXCMS is freely available as an open-source
R-package that includes a graphical user interface. It can be
downloaded from http://metlin.scripps.edu/metaxcms/.

’WORKFLOW

The data processing workflow using metaXCMS can be
summarized in the following steps. First, metaXCMS is used to
import the data from multiple metabolomics experiments as
TSV (tab separated) files or Excel sheets (.xlsx), both of which
are standard formats exported by XCMS that can be directly
imported into metaXCMS without any further preprocessing.
After loading of the experimental data, sample class assignments
are verified and the control group for each experiment is defined.
During the second processing step, feature lists are filtered by a fold
change (e.g., g2), p-value (e.g.,e0.01), or predefined patterns of

up- and down-regulation (e.g., features that are up-regulated in a
first experiment, wildtype 1 vs knockout 1, but down-regulated in a
second experiment, wildtype 2 vs knockout 2). In addition, feature
lists can be designed to be subtracted from the final result so that
metabolic changes in a control experiment (such as a reverse
knockout) can be disregarded. The next step is the automated
alignment of the feature lists from the different experiments on the
basis of both m/z and retention time. The alignment method
“group.nearest” that is implemented inXCMS is employed to align
the data within user-definedm/z and retention timewindows. The
best results are achieved if the same liquid chromatography/mass
spectrometry (LC/MS) conditions are used for all samples that
are to be aligned.

While the number of data sets that can be compared with
metaXCMS is generally not limited, a direct visualization of the
result as a Venn diagram is only possible for instances in which
the number of sample groups is five or less. The Venn diagram
shows the number of common features to all sample groups as
well as the number of features contained within other possible
intersections. It should be noted that in some experiments, fea-
tures that are not shared among sample groups may be the most
biologically interesting, depending on the model systems being
investigated and the question being asked. All metaXCMS results
are displayed in tables that can be exported as Excel sheets.

For a detailed visual verification of the results, the retention
time correction for all raw data files is recalculated using OBI-
Warp17 and extracted ion chromatograms (EIC) are generated
for all selected features. Furthermore, boxplots are generated to
visualize the distribution of feature intensities across the experi-
ments. All graphic results can be exported as PNG or PDF files.
The visualization displays are shown in Figure 2 for an example
data set.

’EXPERIMENTAL SECTION

As a demonstration of the utility of the software, here we
briefly describe the experimental application of metaXCMS to

Figure 1. Data reduction with metaXCMS. The workflow is demonstrated using the pain data set, where pain model A is CFA-treated animals, pain
model B is heat-treated animals, and painmodel C is KRN-treated animals. The applied fold changes and p-values for the first filtering step wereg1.5 and
e0.05, respectively.
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the investigation of three mouse models of pain as well as five
Halobacterium salinarum knockout organisms. For the pain
study, metabolites were extracted from 10 mg pieces of skin iso-
lated from the hind paw of animals. The following animal groups
were compared: (A) animals plantar injected with Complete
Freund's Adjuvant (CFA) and control animals, (B) animals to
which noxious heat was acutely applied to the hind paw and room
temperature-treated control animals; and (C) animals intra-
peritoneally injected with serum from K/BxN mice (i.e., KRN-
treated mice) and vehicle-treated controls. These animals repre-
sent an inflammatory model,18 an acute heat model,19 and a
spontaneous arthritis model of pain,20 respectively. All experi-
ments were conducted in accordance with the National Institutes
of Health and the Scripps Research Institute animal care and use
guidelines. Five biological replicates were used for each pain
model and control group.

Halobacterium salinarum cultures of four knockout strains
(ΔVNG1816G,ΔVNG2094G,ΔVNG1179C, andΔVNG0314G)
were grown to logarithmic-growth phase and compared to their
parent control strain (Δura3). Cultures were centrifuged, rinsed
with phosphate buffer solution, and lyophilized. Metabolites were
extracted from 5 mg of frozen cell pellets from each culture. The
genes VNG1816G, VNG2094G, and VNG1179C encode leucine-
responsive regulatory protein (Lrp) family transcription factors.21,22

The proteins encoded by VNG1816G and VNG2094G share
binding sites that are upstream to genes involved in glutamic acid
metabolism. The Cu-responsive transcription factor VNG1179C
represses VNG2094G, suggesting that glutamic acid metabolism
is transcriptionally influenced by Cu-trafficking.22 VNG0314G
encodes an enzyme in the shikimate biosynthesis pathway.
VNG0314G served as a negative control for a metabolic pertur-
bation that does not affect glutamic acid biosynthesis.

From skin tissue and lyophilized cell cultures, metabolites were
extracted using cold methanol and acetone as described before.13

Liquid chromatography was performed using a reverse-phase C18

column (ZorbaxC18, Agilent, 5mM, 150mm� 0.5mmdiameter
column) with a flow rate of 20 μL/min. Samples were analyzed by
using electrospray ionization time-of-flight mass spectrometry
(Agilent 6510 TOF) with water and acetonitrile for mobile phases
A and B, each containing 0.1% formic acid. The chromatography
started at 90%mobile phase Awith a 45min linear gradient to 98%
mobile phase B.

’RESULTS AND DISCUSSION

Although each of the pain models used in this study involves
different pathogenic etiologies and mechanisms, we hypothe-
sized that there may be common metabolites involved in trig-
gering the transduction of nociceptive signals. We first compared
each of the pain models to its respective control by using XCMS.
XCMS performs feature detection as well as nonlinear retention
time alignment and calculates statistics (Welch t test) for each
feature. The XCMS result is a table that contains the m/z and
retention time coordinates, p-value and fold change for each
feature, and the integrated feature intensities from all aligned
samples. Each one of the three pain model comparisons resulted
in more than 7 000 features, with the total number of summed
features from all comparisons being 22 577. The three TSV files
that were generated by XCMS were imported into metaXCMS
and filtered by fold change (g1.5) and p-value (e0.05). No
restrictions were made on up- or down-regulation.

The filter step yielded 380, 837, and 608 differentially regu-
lated features for each one of the pairwise comparisons, result-
ing in a total number of 1825 dysregulated features (Figure 1,
heatmaps). The second-order comparison was applied using
a tolerance of 0.01 m/z and 60 s retention time. Three features
were found to be differentially regulated in all three pain models
(Table 1).

Retention time correction was then applied to the raw data
for the generation of extracted ion chromatograms for each
shared feature. In addition, boxplots were created on the basis of

Figure 2. metaXCMS screenshot showing retention time correction curves and parameter settings for extracted ion chromatogram (EIC) generation
(left), EIC overlay showing the ion intensity for m/z 112.09 ( 0.01 for all samples from the pain data set (upper right), and boxplots showing the
distribution of integrated intensities of the feature m/z 112.09 for all pain samples (lower right). Pain models A, B, and C are defined in the legend of
Figure 1.
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integrated intensity as exported from XCMS. Retention time
correction curves for all pain samples is shown in Figure 2, along
with overlaid extracted ion chromatograms and boxplots for the
featurem/z 112.09. The compound with an observedm/z value of
112.09 was identified as histamine using accurate mass, retention
time, and MS/MS fragmentation data as compared with a model
compound. As validation of the approach, our result is consistent
with the literature in that histamine has beenwell characterized as a
mediator of pain by several mechanisms.23-25 It has been shown
that irritation of the skin by mechanical, electrical, or chemical
stimuli causes release of histamine by mast cells resulting in sen-
sory nerve ending depolarization.26 In the skin, histamine recep-
tors are found on Aβ fibers, on keratinocytes, on Merkel cells, and
on deep dermal Aδ fibers terminating on dermal blood vessels.27

The precise physiological effects of histamine are complex due to
its immunomodulatory and neurotransmitter properties,28,29 but
our observation that it is commonly dysregulated is consistent with
that which has been reported previously.

For the Halobacterium salinarum study, second-order analysis
was performed on ΔVNG2094G andΔVNG1816G with respect
to their parent strains. For these mutants, 282 shared differences
were detected. Among those, glutamic acid was found to be simi-
larly dysregulated as expected (Figure 3a). The identity of gluta-
mic acid was confirmed using accurate mass and MS/MS data as
compared with a model compound. A higher-order analysis was
also performed in which the difference profile fromΔVNG1179C
with respect to its wildtype was introduced into the comparison.
The number of shared differences decreased from 282 to 171
(Figure 3b). Importantly, glutamic acid was similarly dysregu-
lated in all three mutants, supporting the previously suggested
physiological link between Cu-trafficking and glutamic acid
metabolism (ΔVNG2094G, fold change 1.6, p-value 0.01;
ΔVNG1816G, fold change 2.2, p-value 0.03; ΔVNG1179C, fold
change 1.9, p-value 0.01). Finally, as a negative control, the compari-
son of ΔVNG0314G to its parent strain was introduced into the
analysis. VNG0314G encodes an enzyme involved in shikimate bio-

synthesis that is unrelated to glutamic acid metabolism and
therefore ΔVNG0314G served as a negative control. Glutamic
acid was not detected as a differentially regulated metabolite
among all four mutants (Figure 3c). The decrease in shared
features among all samples with the addition of ΔVNG0314G
demonstrates the utility of eliminating features not specifically
related to the phenotype of interest with metaXCMS by using a
negative control.

’CONCLUSIONS

In summary, metaXCMS provides software for second-order
analysis of metabolomics data facilitating meta-comparisons simi-
lar to those already used in genomics and transcriptomics.30-33

The introduction of such software inmetabolomics is of significant
value as it not only provides an analytical tool for distinguishing
metabolites fundamentally associated with the underlying origin of
a particular phenotype, but it also allows for data reduction at the
feature level. Structural characterization of features is a rate-limit-
ing step in the metabolomics workflow, and therefore metaXCMS
offers a method to efficiently identify features with a higher
likelihood to be biologically relevant prior to the time commitment
of compound identification. In addition, metaXCMS provides a
tool to analyze large cohorts of clinical samples from different
groups or with complex subgroup variability.
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aThe fold change and p-values are shown as calculated by XCMS for the pairwise comparison.

Figure 3. Venn diagrams showing the results of the second-order comparisons of four different Halobacterium salinarum knockout strains using
metaXCMS. Mutants 1, 2, and 3 represent the strainsΔVNG2094G,ΔVNG1816G, andΔVNG1179C, all of which are characterized by perturbations in
glutamic acid metabolism. ΔVNG0314G does not affect glutamic acid metabolism, so ΔVNG0314G served as a negative control.
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