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INTRODUCTION
Metabolites are the biochemical end products of gene activity, and 
they therefore provide a functional readout of cellular phenotype1–3. 
Untargeted metabolomics is the global and simultaneous profiling 
of as many metabolites as possible in a search to identify altered 
pathways that provide a phenotypic signature for the biological 
system of interest4–7. The approach has been widely applied to elu-
cidate biomarkers of disease, to discover new therapeutic targets, to 
assign unknown gene function and to gain mechanistic insight into 
physiological processes in plants, yeast, bacteria and mammals8–13. 
Although historically much attention has been dedicated to the 
analysis of metabolites, until recently most studies focused on a 
relatively small number of compounds. However, developments 
in high-resolution mass spectrometers now enable the simultane-
ous detection of thousands of low-concentration species and have 
largely driven the field of global metabolic profiling over the course 
of the past 10 years14,15.

As with any ‘omics’ technology, the development of metabolomics 
has relied on advances in bioinformatic tools that are required for 
analysis of the complex data sets generated. The analytical tech-
nique that has proven to be the most suitable for looking at the 
largest number of compounds is liquid chromatography/mass 
spectrometry (LC/MS)14,16. A typical LC/MS analysis of a meta-
bolic extract from a biological tissue or fluid results in the detec-
tion of thousands of peaks, each characterized by a unique m/z 
value and/or retention time17,18. The first bioinformatic challenge 
in LC/MS-based metabolomics was comparing the intensity of 
individual peaks, known as metabolite features, across all of the 
samples measured. A complication is that the retention time of a 
particular metabolite can change slightly from one run to the next 
due to experimental drift. Deviations in retention time (e.g., from 
fluctuations in the room temperature, time-dependent changes in 
the sample and column degradation) are nonlinear and compli-
cate the feature assignments that are used for correlation between 
samples19. In 2005, a metabolomic program was developed called 

XCMS, which was used to identify dysregulated metabolite features  
between two sample groups by using a novel nonlinear retention- 
time alignment algorithm that does not require the addition of 
internal standards17. XCMS is a freely available and platform- 
independent R package that processes, analyzes and visualizes 
LC/MS metabolomic data. XCMS is widely used in the field of 
 untargeted metabolomics, with over 350 citations of the original 
paper and more than 45,000 downloads as of 2011.

Although XCMS and other metabolomic programs that have been 
developed are well suited for the analysis of large sample numbers, 
the programs are limited in that they only compare two different 
sample groups directly20,21. Manual comparisons of multiple sets of 
XCMS results have been performed, but these studies involve only 
a small number of sample groups and require additional analysis 
time22. metaXCMS was developed to provide a tool for efficient meta-
analysis of untargeted metabolomic data sets containing any number 
of sample groups23. Meta-analysis can be defined as an approach that 
compares the results from two or more independently performed 
studies to identify data points that are unique or shared among 
all or some of the experimental groups24. Figure 1 highlights the 
application of metaXCMS to identify unique and shared metabolite 
features that are dysregulated between three independent pairwise 
comparisons. Similar types of meta-analysis tools have been suc-
cessfully applied in genome-wide association studies to investigate 
conditions with complex and heterogeneous phenotypes25–27.

Applications
To drive our understanding of chemical physiology, dysregulated 
metabolites and related cellular pathways need to be specifically 
correlated with unique biological processes or disease states. Often, 
however, an untargeted metabolomic analysis results in a substantial 
number of altered metabolite features and it is a major challenge to 
differentiate molecules that are causally associated with the pheno-
type of interest from those that are altered as a downstream effect. 

Meta-analysis of untargeted metabolomic data from 
multiple profiling experiments
Gary J Patti1–3,5, Ralf Tautenhahn4,5 & Gary Siuzdak4

1Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA.  2Department of Chemistry, Washington University School of Medicine,  
St. Louis, Missouri, USA.  3Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA. 4Department of Chemistry and Molecular 
Biology, Center for Metabolomics, Scripps Research Institute, La Jolla, California, USA. 5These authors contributed equally to this work. Correspondence should be 
addressed to G.S. (siuzdak@scripps.edu).

Published online 16 February 2012; doi:10.1038/nprot.2011.454

metaXCMS is a software program for the analysis of liquid chromatography/mass spectrometry–based untargeted metabolomic data. 
It is designed to identify the differences between metabolic profiles across multiple sample groups (e.g., ‘healthy’ versus ‘active 
disease’ versus ‘inactive disease’). Although performing pairwise comparisons alone can provide physiologically relevant data, 
these experiments often result in hundreds of differences, and comparison with additional biologically meaningful sample groups 
can allow for substantial data reduction. By performing second-order (meta-) analysis, metaXCMS facilitates the prioritization 
of interesting metabolite features from large untargeted metabolomic data sets before the rate-limiting step of structural 
identification. Here we provide a detailed step-by-step protocol for going from raw mass spectrometry data to metaXCMS results, 
visualized as Venn diagrams and exported Microsoft Excel spreadsheets. There is no upper limit to the number of sample groups 
or individual samples that can be compared with the software, and data from most commercial mass spectrometers are supported. 
The speed of the analysis depends on computational resources and data volume, but will generally be less than 1 d for most users. 
metaXCMS is freely available at http://metlin.scripps.edu/metaxcms/.

http://metlin.scripps.edu/metaxcms/
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Here metaXCMS provides a broadly applicable data-reduction strat-
egy, as we recently showed in a study of three different mouse mod-
els of pain that were characterized by unique pathogenic etiology 
(Fig. 2)23. Mice injected with complete Freund’s adjuvant were used 
as an inflammatory model, those to which noxious heat was acutely 
applied to the hind paw were used as an acute heat model and mice 
that were intraperitoneally injected with serum from K/BxN mice 
were used as a pain model of spontaneous arthritis28–30. Although 
the pairwise comparisons of each pain model with its respective 
control resulted in hundreds of altered metabolite features in total, 
we suspected that at least some of these molecules may be involved 
in triggering the transduction of pain signals. The second-order 
analysis of the results with metaXCMS showed that only three of the 
altered molecules were shared among all of the models. We deter-
mined that one of the shared differences was the well-characterized 
pain mediator histamine, thereby validating the value of the meta-
analysis for identifying mechanistically relevant metabolites causally 
associated with the phenotype of interest. A comparable approach 
could be applied to any type of disease or stress model.

As another example, we analyzed two knockout strains 
of Halobacterium salinarum. Specifically, knockout strains 

VNG1816G and VNG2094G were each compared with their par-
ent control strain ura3. The proteins encoded by VNG1816G and 
VNG2094G are known to affect glutamic acid metabolism23,31,32. As 
expected, results from metaXCMS showed a feature that was simi-
larly dysregulated in the pairwise comparison of each mutant to its 
control; this was consistent with the accurate mass and retention 
time of glutamic acid (feature number 88, m/z 148.0606, retention  

time 5.8 min). The identity of glutamic acid was confirmed by com-
paring the retention time and MS/MS fragmentation pattern to that 
of a commercial standard. A truncated version of the XCMS files 
from each pairwise comparison is available for download as a test 
data set at http://metlin.scripps.edu/data/metaXCMS/metaXCMS- 
testdata.zip. Expected results from performing the protocol 
described here are provided for comparison within the .zip file.

metaXCMS also has broad applicability in the more clinical con-
text of biomarker elucidation. Traditionally, metabolite biomarker 
discovery has been performed by comparing healthy subjects to 
those affected by disease33. Most disease states of interest, however, 
are exceedingly complex and highly variable from subject to subject 
at different stages of progression and severity with potentially dif-
ferent prognoses34. In addition, there are a number of confounding 
variables that can be difficult to account for but that are known to 
influence metabolic profiles, such as sex, age, diet, drug regimen, 
ethnicity and body mass index35. Given the relatively good through-
put of LC/MS-based metabolomics, it has become readily practical 
to analyze thousands of human patient samples10,11. metaXCMS 
may be applied to compare subgroup populations within these 
large cohorts to identify metabolic predictors of disease course 
(Fig. 3) and potential risk factors related to other clinical variables. 
In addition, metaXCMS analysis of phenotypically stratified sub-
group populations similarly has utility in assessing drug efficacy. 
The comparison of subgroup difference profiles of patients on and 
off drug treatment (e.g., ‘low blood pressure on drug’ versus ‘low 
blood pressure off drug’ compared with ‘high blood pressure on 
drug’ versus ‘high blood pressure off drug’) will greatly facilitate 
the identification of variables affecting drug response and potential 
patients who are at risk of off-target effects.

Experimental design
Although untargeted metabolomics is generally hypothesis gener-
ating as opposed to hypothesis driven, it is important to carefully 
construct an experimental design to ensure that the results have 
value given the significant effort and time that are required for data 
analysis. Generally, the rate-limiting step in the untargeted metab-
olomic workflow is the structural identification of metabolites36. 
Although the untargeted profiling analysis provides the accurate 
mass of altered features between sample groups, these data must 
then be searched in metabolite libraries and structurally charac-
terized by comparison of retention time and tandem MS data to 
that of standard model compounds. Thus, pairwise comparisons 
that yield hundreds of altered features can be challenging in that 
they require considerable effort and resources for identification. 

Variation C vs

Variation B vs control B

control C

Variation A vs control A

Pairwise comparisons
(XCMS)

Second-order comparison
(metaXCMS)

Biological replicate 1
Biological replicate 2
Biological replicate 3

...

Biological replicate 1
Biological replicate 2
Biological replicate 3

...

e.g., e.g.,

Figure 1 | Introduction to pairwise and second-order comparison. XCMS 
performs a pairwise comparison of two sample groups with any number of 
biological replicates. Data from multiple pairwise comparisons are then used 
by metaXCMS to perform a second-order comparison, in which shared and 
unique differences are identified.

A 
A

B
B

C 

C
A

B C

3

Raw XCMS report:
22,577 features

Significant differences:
1,825 features

Shared differences:
3 features

Figure 2 | Data reduction by meta-analysis. 
Three pairwise comparisons of different  
pain models with their respective  
controls resulted in 22,577 detected 
metabolite features (model A is mice  
that were plantar injected with complete 
Freund’s adjuvant, model B is mice  
treated with noxious heat and model C  
is animals intraperitoneally injected  
with serum from K/BxN mice; for  
further details see ref. 23). Next,  
features with fold changes less than  
1.5 and P values greater than 0.05  
were filtered and the remaining 1,825 features were plotted. A second-order comparison by metaXCMS showed that only three of these features  
were commonly shared, one of which was determined to be histamine. 

http://metlin.scripps.edu/data/metaXCMS/metaXCMS-testdata.zip
http://metlin.scripps.edu/data/metaXCMS/metaXCMS-testdata.zip
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The incorporation of additional physiologically meaningful sam-
ple groups into the experimental design, however, can result in a 
reduced list of interesting features. Notably, this data reduction by 
meta-analysis is at the feature level before the rate-limiting step of 
structure determination. metaXCMS, therefore, has the potential to 
improve the overall throughput and efficiency of untargeted studies 
by prioritizing features to be identified that have a high likelihood 
of being biologically relevant.

Two broadly applicable experimental designs using metaXCMS 
include the following: (i) the comparison of different variations of 
a disease or stress model to identify shared metabolic alterations 
related to a mechanistically fundamental response, and (ii) the com-
parison of phenotypically stratified patient cohorts to deconvolute 
metabolic responses associated with specific clinical variables and 
disease heterogeneity (results from the latter have yet to be pub-
lished for metabolomic data, but similar designs have been used in 
genomics27,37,38). Many other context-dependent applications are also 
conceivable, but in all cases certain experimental conditions should 
be followed for best results. First, the samples should be prepared 
using the same metabolite-extraction method. Different extraction  

methods may lead to the removal of different metabolites and 
thereby introduce artificial differences into the comparison18. In 
addition, because metaXCMS correlates peaks on the basis of m/z 
values and retention time, all samples being compared should be ana-
lyzed by using the same column and chromatographic method. These 
experimental requirements are limiting in that meta-comparisons  
of metabolomic analyses from different laboratories are likely to 
be unreliable. Although such inter-laboratory comparisons have 
intriguing potential, the protocol described here was not designed for 
that purpose. It should be noted, however, that meta-analyses from 
different laboratories should, in principle, provide the same profile of 
shared differences despite potential alterations in the retention times 
of specific compounds across different laboratories.

Figure 4 shows an overview of the meta-analysis workflow. The 
process of file conversion, feature detection and alignment, and 
second-order analysis is described in the PROCEDURE. For details 
on data acquisition, see Want et al.39. For more details on result 
browsing and interpretation, see Smith et al.17 and Tautenhahn  
et al.23. For a discussion regarding the appropriate number of samples  
per sample group, see Box 1.

Severe diseaseMild disease

Healthy

a b c

Mild disease
versus healthy

a b c

Severe disease
versus healthy

Second-order visualizationFigure 3 | Visualization of theoretical meta-analysis applied to identify 
biomarkers of disease severity. The left Venn diagram shows shared and 
unique metabolite features for mild disease, severe disease and healthy 
patients. Although features in the areas labeled a, b and c may serve as 
biomarkers, areas a and c could provide additional markers specific to 
mild and severe disease, respectively. The right Venn diagram shows a 
second-order visualization of the same comparison that is representative 
of metaXCMS output when the parameters are set to plot only metabolite 
features that are unique to disease (i.e., features that are detected in disease, but not in healthy samples). The advantage of the second-order visualization 
is that it is not limited to representing only metabolites unique to a certain sample group. Rather, metabolites that are up- and downregulated by even small 
fold changes can be easily represented according to user-defined thresholds. Given that biomarkers may not be metabolites unique to disease samples but 
instead metabolites that increase by some quantified fold change, second-order visualizations are generally better suited for metabolomic data as they can be 
used to show up- and downregulated features (see Venn diagram in Fig. 2). Changing the second-order visualization here to include features with smaller fold 
changes, for example, would result in the display of more features that might represent useful diagnostic markers. 

 Box 1 | Number of samples per sample group 
Currently, there is no consensus in the field with respect to the minimal number of samples that should be included per sample group 
for an untargeted metabolomic analysis. Similarly, different P value and fold change cutoffs are used depending on the biological  
system under investigation, the methods used for metabolite extraction and the analytical platform used. Studies have shown that  
instrument variability is smaller than biological variability for mammals and suggested that lower-limit fold change thresholds of  
1.5–2.0 be used35,42. These lower-limit fold change thresholds from individual pairwise comparisons are likely to be appropriate thresh-
olds for meta-analysis. Although XCMS and metaXCMS can be used to analyze groups with as few as two samples, typically larger sample 
groups are needed because of intergroup biological variability. It should also be noted that it may be appropriate to apply a statistical 
correction for multiple comparisons (e.g., a Bonferroni correction) to metaXCMS results depending on the experimental design. These 
additional statistical tests are context-dependent and should be performed manually after metaXCMS analysis when appropriate.

MATERIALS
EQUIPMENT
Hardware requirements

A personal computer with at least 2 GB RAM; a multicore processor with 
at least 2 GB RAM per core is recommended for the processing of large 
files/sample groups
Sufficient hard-drive storage space for raw data files, converted files  
and results

Software requirements
For sample conversion: 32- or 64-bit versions of Windows operating system 
(XP, Vista, Windows 7)

•

•

•

For XCMS and metaXCMS analysis: any 32- or 64-bit version of Windows, Unix 
operating system or Mac OS X (release 10.5 and above) can be used. However, 
as most 32-bit operating systems cannot allocate more than 2 GB RAM, 64-bit 
operating systems are recommended for working with large files/sample groups

EQUIPMENT SETUP
Software installation Install metaXCMS as described on http://metlin.
scripps.edu/metaxcms/download.php. XCMS will be automatically installed 
during the installation of metaXCMS. In addition, download and install 
ProteoWizard (http://proteowizard.sourceforge.net/).  CRITICAL Download 
the ProteoWizard version that includes vendor reader support.

•
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PROCEDURE
Conversion of vendor-format data files to mzXML
1| Locate MSConvertGUI.exe in the ProteoWizard folder 
and run it by double-clicking to call up the graphical user 
interface as shown in Figure 5.

2| Click ‘Browse’. Select the raw data files to convert.  
Multiple files can be selected at once. 

 CRITICAL STEP ProteoWizard currently supports the 
conversion of Agilent, Applied Biosystems, Bruker, Thermo 
Fisher and Waters data files (see http://proteowizard.
sourceforge.net/formats.shtml for information about other 
file formats).

3| Click the filter selection dialog. Select ‘Peak Picking’. 
Make sure ‘Prefer Vendor’ is activated.

4| Click the ‘Add’ button to add peak picking to the 
filter list. This will make sure that the resulting files are in 
centroid mode, which is a requirement for the subsequent 
feature detection.

5| Click ‘Browse’ to select the output directory. Select 
‘mzXML’ as the output format.

6| Click ‘Start’ to begin file conversion.

Pairwise comparison by using XCMS
7| Organize mzXML files in folders. Create a folder for each 
pairwise comparison. Inside this folder, create a subfolder 
for each group. Move all mzXML files that were acquired for 
the respective sample group into the corresponding folder. 
For example, make a folder ‘variationA_vs_controlA’ that 
contains subfolders for each group ‘variation’ and ‘controlA’, 
into which the individual mzXML files are copied.

8| Run R and load the XCMS package.

library(xcms)

9| Set the R working directory to the folder containing the files for the first pairwise comparison; for example,

setwd(‘C:/Data/variationA_vs_controlA’) 
 CRITICAL STEP R uses the Unix-style forward slashes (/) as path separators on Windows operating systems; single  

backslashes (\) do not work.

10| Start the feature detection using the ‘centWave’ method40.

xset  < - xcmsSet(method = ‘centWave’)

Instrument software

Acquisition

Conversion

Feature
detection

and
alignment

Second-
order

analysis

Result
browsing

and
interpretation

MSConvertGUI.exe

XCMS (R)

metaXCMS
.tsv .tsv .tsv

.mzXML

Raw data

Multiple
XCMS
results

Excel Image viewer

.csv .png

KRN/veh

332

17

3

28

536
CFA/CTRL 41

776
heat/rt

Figure 4 | Overview of the computational workflow. The workflow consists 
of five stages: acquisition of LC/MS data, conversion of the data to .mzXML 
files, analysis of the files by XCMS, analysis of XCMS results by metaXCMS, 
and result browsing and interpretation. 
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If you use a PC with multiple cores, add the argument 
nSlaves and specify the number of cores (e.g., for a PC with 
2 cores, use the following code).

xset  < - xcmsSet(method =‘centWave’, 
nSlaves = 2).
? TROUBLESHOOTING

11| Perform retention-time correction using the ‘OBIwarp’ 
method41.

xset1  < - retcor(xset, method = ‘obiwarp’, 
plottype  =  c(‘deviation’))

The retention-time correction curves should be displayed as 
represented in Figure 6.

12| Group features together across samples.

xset2  < - group(xset1, bw  =  5, minfrac  =  0.5, mzwid  =  0.025)

13| Fill in missing peaks, calculate statistics, generate feature table and extracted ion chromatograms (EICs).

xset3  < - fillPeaks(xset2)

dr  < - diffreport(xset3, filebase =  ‘variationA_vs_controlA’, eicmax = 100)

Use the name of your pairwise comparison for filebase. Output files and folders will be generated with that  
name.

The parameters used above are optimized for HPLC with ~60 min gradient and high-resolution quadrupole time-of-flight  
(Q-TOF) MS. Suggested parameter settings for most common experimental setups are shown in Table 1.
? TROUBLESHOOTING

14| Close the R session.

q(‘no’)

15| Repeat Steps 8–14 for each of the pairwise  
comparisons. 

 CRITICAL STEP Do not rename or move the data folders 
and do not rename the columns in the XCMS result table 
after XCMS processing. This will make metaXCMS unable to 
process the XCMS results.

Meta-analysis with metaXCMS
16| Run R and load the metaXCMS package (Fig. 7).

library(metaXCMS)
? TROUBLESHOOTING

17| Click ‘Import XCMS diffreport’. Navigate to the folder 
that contains the results from one of the pairwise  
comparisons and open the .tsv file (e.g., variationA_ 
vs_controlA.tsv).

2 3 4

7

5

6

Figure 5 | MSConvertGUI.exe, the graphical user interface of the 
ProteoWizard file converter. The input fields or icons of the software are 
numbered according to their corresponding PROCEDURE steps. 
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Retention time deviation versus retention time
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Figure 6 | Retention-time correction curves generated by XCMS. Each colored 
line represents a different sample processed. Note that the retention time 
deviation is different for each sample and that it is not linear. 
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18| Repeat Step 17 until all of the results from the pairwise comparisons are loaded.

19| Verify that sample classes have been assigned correctly by clicking on the file name of one of the pairwise comparisons 
on the left side of the window to select it. All sample names and the automatically assigned sample classes of that com-
parison are displayed on the right side of the window. If sample classes are assigned incorrectly, double-click and select the 
correct sample class from the pull-down menu.

20| Verify that the control sample class is assigned correctly. The sample class that is used as a control for each  
pairwise comparison is shown in the column ‘Control is’. If the assignment is incorrect, double-click and select the  
correct sample class from the pull-down menu. This will make sure metaXCMS can correctly display and filter up- and 
downregulated features.

21| Click ‘Continue’ to view filtering options (Fig. 8).

22| Select fold change and P value thresholds for filtering. Note that P values are calculated in XCMS by performing a  
Welch’s t test with unequal variance.

23| Click ‘Apply filter’. The number of remaining features (green) will be updated.

24| If only up- or downregulated features should be used from a pairwise comparison, click on ‘all’ and select ‘UP’ or ‘DOWN’ 
from the pull-down menu. Click ‘Apply filter’.

TABLE 1 | Suggested XCMS parameter settings.

Instrument p.p.m. Peak width bw mzwid Prefilter

HPLC/Q-TOF 30 c(10,60) 5 0.025 c(0,0)

HPLC/Q-TOF (high resolution) 15 c(10,60) 5 0.015 c(0,0)

HPLC/Orbitrap 2.5 c(10,60) 5 0.015 c(3,5000)

Ultraperformance liquid chromatography (UPLC)/Q-TOF 30 c(5,20) 2 0.025 c(0,0)

UPLC/Q-TOF (high resolution) 15 c(5,20) 2 0.015 c(0,0)

UPLC/Orbitrap 2.5 c(5,20) 2 0.015 c(3,5000)

17

21

20 19

Figure 7 | Graphical user interface of metaXCMS. The input fields or icons 
related to the import of XCMS diffreports are indicated by arrows that are 
numbered according to the PROCEDURE step in which they are described. 

25

26

24 22 23 22

Figure 8 | Graphical user interface of metaXCMS. Filtering may be performed 
on the basis of P value, fold change and up- or downregulation. The input 
fields or icons related to filtering are indicated by arrows that are numbered 
according to the PROCEDURE step in which they are described. 



©
20

12
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

PROTOCOL

514 | VOL.7 NO.3 | 2012 | NATURE PROTOCOLS

25| If features from a pairwise comparison should be sub-
tracted from the result (e.g., such as features altered in a 
sham control), select the ‘subtract from result’ checkbox.

26| Click ‘Continue’.

27| Adjust acceptable m/z and retention-time tolerance. 
Default values for HPLC/Q-TOF are 0.01 and 60 s.

28| Click ‘Find common features’. After the alignment has been calculated, a Venn diagram with the numbers of unique and 
common features between the pairwise comparisons will be shown (Fig. 9).

29| Save the Venn diagram as a .png or .pdf file.

30| To export a table with only the common features, click ‘Export common features table’.

31| To export a table with all features (unique, common and shared), click ‘Export all features table’.

32| Click ‘Continue’.

33| Click ‘Run Raw Data Alignment’. Retention-time correction for all samples will be recalculated (Fig. 10).
? TROUBLESHOOTING

34| Click ‘Generate EICs for common features’. After an output folder for the EICs has been selected, EICs will be generated 
for all common features by using the data from all samples.
? TROUBLESHOOTING

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 2. If you see the error message: “Error: cannot allocate vector of size X Mb” 
(this might occur in any of Steps 10–13 and 17–34), it means that you have insufficient RAM. You will need to upgrade the 
RAM, and use a 64-bit operating system. If you experience problems not discussed here, please write a comment on this 
protocol and describe the problem in the XCMS/metaXCMS user forum at http://metlin.scripps.edu/xcms/faq.php.

27 28 27

313029
32

KRN/veh

332

17

3

28

536
CFA/CTRL 41

776
heat/rt

Figure 9 | Graphical user interface of metaXCMS. Features that are uniquely 
or commonly altered among the pairwise comparisons are displayed as Venn 
diagrams. The icons related to data visualization and export are indicated by 
arrows that are numbered according to the PROCEDURE step in which they 
are described. 

TABLE 2 | Troubleshooting table.

Step Problem Possible reason Solution

10 Error in xcmsSet(method = “centWave”):  
no NetCDF/mzXML/mzData/mzML files  
were found

Working directory does 
not contain any LC/MS 
raw data files

Make sure the correct folder is selected

16 Error in inDL(x, as.logical(local), 
as.logical(now), …): unable to load shared 
object ‘C:/Program Files/[…]/cairoDevice.dll’:

GTK +  software is not 
installed

Install GTK +  as described on http://metlin.
scripps.edu/metaxcms/download.php

Error in inDL(x, as.logical(local), 
as.logical(now), …): unable to load shared 
object ‘C:/Program Files/[…]/RGtk2.dll’:

GTK+ software is not 
installed

Install GTK+ as described on http://metlin.
scripps.edu/metaxcms/download.php 

33 Cannot find the raw data files for X Raw data files have been 
deleted or moved

Do not rename or move the data folders and 
do not rename columns in the XCMS result 
table after XCMS processing
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 TIMING
The total timing for the protocol is 
variable. Depending on the number of 
CPU cores used, XCMS processing  
(Steps 10–13) typically takes 15 min  
to 2 h per pairwise comparison. 
Depending on the number of samples 
and the file size, Steps 33 and 34 can 
take up to 1–2 h each.

ANTICIPATED RESULTS
metaXCMS will create tables with all features (unique, common and shared) in .csv format (comma separated values). The 
files can be opened by Microsoft Excel or Open Office and displayed as spreadsheets. Each row of the spreadsheet will corre-
spond to a feature and list m/z values as well as retention-time values in addition to fold changes and P values (as originally 
calculated by XCMS) for each of the pairwise comparisons. EICs will be generated for each feature in the table and can be 
used for visual inspection. It is important to note that metaXCMS does not provide metabolite identifications. To identify 
interesting features, generally accurate masses are first searched in metabolite databases for making putative metabolite 
assignments. The putative assignments are subsequently confirmed by additional experiments comparing retention time and 
tandem MS data to those of model standards.

ACKNOWLEDGMENTS This work was supported by the California Institute  
of Regenerative Medicine (grant TR1-01219), the US National Institutes  
of Health (grants R24 EY017540-04, P30 MH062261-10 and P01  
DA026146-02) and a US National Institutes of Health/National Institute  
on Aging grant (L30 AG0 038036; to G.J.P.). Financial support was  
also received from the US Department of Energy (grants FG02-07ER64325  
and DE-AC0205CH11231).

AUTHOR CONTRIBUTIONS G.J.P., R.T. and G.S. contributed to the development 
of the protocol and the writing of the manuscript.

COMPETING FINANCIAL INTERESTS The authors declare no competing financial 
interests.

Published online at http://www.natureprotocols.com/.  
Reprints and permissions information is available online at http://www.nature.
com/reprints/index.html.

1. Weckwerth, W. Unpredictability of metabolism—the key role of 
metabolomics science in combination with next-generation genome 
sequencing. Anal. Bioanal. Chem. 400, 1967–1978 (2011).

2. Baker, M. Metabolomics: from small molecules to big ideas. Nat. Meth. 8, 
117–121 (2011).

3. Yanes, O. et al. Metabolic oxidation regulates embryonic stem cell 
differentiation. Nat. Chem. Biol. 6, 411–417 (2010).

4. Wikoff, W.R. et al. Metabolomics analysis reveals large effects of gut 
microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 
106, 3698–3703 (2009).

5. Wikoff, W.R., Pendyala, G., Siuzdak, G. & Fox, H.S. Metabolomic analysis 
of the cerebrospinal fluid reveals changes in phospholipase expression in 
the CNS of SIV-infected macaques. J. Clin. Invest. 118, 2661–2669 
(2008).

6. Vinayavekhin, N. & Saghatelian, A. Untargeted metabolomics. Curr. Protoc. 
Mol. Biol. 90, 30.1.1–30.1.24 (2010).

7. Wikoff, W.R., Nagle, M.A., Kouznetsova, V.L., Tsigelny, I.F. & Nigam, S.K. 
Untargeted metabolomics identifies enterobiome metabolites and putative 
uremic toxins as substrates of organic anion transporter 1 (Oat1).  
J. Proteome Res. 10, 2842–2851 (2011).

8. Vinayavekhin, N., Homan, E.A. & Saghatelian, A. Exploring disease 
through metabolomics. ACS Chem. Biol. 5, 91–103 (2010).

9. McKnight, S.L. On getting there from here. Science 330, 1338–1339 
(2010).

10. Wang, T.J. et al. Metabolite profiles and the risk of developing diabetes. 
Nat. Med. 17, 448–453 (2011).

11. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes 
cardiovascular disease. Nature 472, 57–63 (2011).

12. Dang, L. et al. Cancer-associated IDH1 mutations produce  
2-hydroxyglutarate. Nature 462, 739–744 (2009).

13. Olszewski, K.L. et al. Branched tricarboxylic acid metabolism in 
Plasmodium falciparum. Nature 466, 774–778 (2010).

14. Fernie, A.R., Trethewey, R.N., Krotzky, A.J. & Willmitzer, L. Metabolite 
profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 
763–769 (2004).

15. Lu, W. et al. Metabolomic analysis via reversed-phase ion-pairing liquid 
chromatography coupled to a stand-alone Orbitrap mass spectrometer. 
Anal. Chem. 82, 3212–3221 (2010).

16. Buscher, J.M., Czernik, D., Ewald, J.C., Sauer, U. & Zamboni, N. Cross-
platform comparison of methods for quantitative metabolomics of primary 
metabolism. Anal. Chem. 81, 2135–2143 (2009).

17. Smith, C.A., Want, E.J., O Maille, G., Abagyan, R. & Siuzdak, G. XCMS: 
processing mass spectrometry data for metabolite profiling using nonlinear 
peak alignment, matching, and identification. Anal. Chem. 78, 779–787 
(2006).

18. Yanes, O., Tautenhahn, R., Patti, G.J. & Siuzdak, G. Expanding coverage  
of the metabolome for global metabolite profiling. Anal. Chem. 83,  
2152–2161 (2011).

19. Want, E.J. et al. Solvent-dependent metabolite distribution, clustering, 
and protein extraction for serum profiling with mass spectrometry.  
Anal. Chem. 78, 743–752 (2006).

100

50

0

0 1,000 2,000
Retention time

Retention time deviation versus retention time GaryP_CFA1

R
et

en
tio

n 
tim

e 
de

vi
at

io
n

3,000 4,000

GaryP_CFA2
GaryP_CFA3
GaryP_CFA4
GaryP_CFA5
GaryP_ctrl1
GaryP_ctrl2
GaryP_ctrl3
GaryP_ctrl4
GaryP_ctrl5
GaryP_heat1
GaryP_heat2
GaryP_heat3
GaryP_heat4
GaryP_heat5
GaryP_heat6
GaryP_RT1
GaryP_RT2
GaryP_RT3
GaryP_RT4
GaryP_RT5
GaryP_RT6
GaryP_KRN1
GaryP_KRN2
GaryP_KRN3

33

34

Figure 10 | Graphical user interface of metaXCMS. 
Retention-time correction for all samples 
compared is displayed and EICs are generated. 
The icons related to retention-time correction and 
EIC generation are indicated by arrows that are 
numbered according to the PROCEDURE steps in 
which they are described. 



©
20

12
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

PROTOCOL

516 | VOL.7 NO.3 | 2012 | NATURE PROTOCOLS

20. Lommen, A. MetAlign: interface-driven, versatile metabolomics tool for 
hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 
81, 3079–3086 (2009).

21. Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: toolbox for processing 
and visualization of mass spectrometry based molecular profile data. 
Bioinformatics 22, 634–636 (2006).

22. Böttcher, C. et al. The multifunctional enzyme CYP71B15 (PHYTOALEXIN 
DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the 
indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 
21, 1830–1845 (2009).

23. Tautenhahn, R. et al. metaXCMS: second-order analysis of untargeted 
metabolomics data. Anal. Chem. 83, 696–700 (2011).

24. Normand, S.L. Meta-analysis: formulating, evaluating, combining, and 
reporting. Stat. Med. 18, 321–359 (1999).

25. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis 
of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

26. de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis 
of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 
(2008).

27. de Bakker, P.I. et al. Efficiency and power in genetic association studies. 
Nat. Genet. 37, 1217–1223 (2005).

28. Chu, Y.C. et al. Effect of genetic knockout or pharmacologic inhibition of 
neuronal nitric oxide synthase on complete Freund s adjuvant-induced 
persistent pain. Pain 119, 113–123 (2005).

29. Bolcskei, K., Petho, G. & Szolcsanyi, J. Noxious heat threshold measured 
with slowly increasing temperatures: novel rat thermal hyperalgesia 
models. Methods Mol. Biol. 617, 57–66 (2010).

30. Kyburz, D. & Corr, M. The KRN mouse model of inflammatory arthritis. 
Springer Semin. Immunopathol. 25, 79–90 (2003).

31. Goo, Y.A. et al. Proteomic analysis of an extreme halophilic archaeon, 
Halobacterium sp. NRC-1. Mol. Cell Proteomics 2, 506–524 (2003).

32. Kaur, A. et al. A systems view of haloarchaeal strategies to withstand 
stress from transition metals. Genome Res. 16, 841–854 (2006).

33. Branca, F., Hanley, A.B., Pool-Zobel, B. & Verhagen, H. Biomarkers in 
disease and health. Br. J. Nutr. 86 (suppl. 1): S55–S92 (2001).

34. Cantor, R.M., Lange, K. & Sinsheimer, J.S. Prioritizing GWAS results: a 
review of statistical methods and recommendations for their application. 
Am. J. Hum. Genet. 86, 6–22 (2010).

35. Crews, B. et al. Variability analysis of human plasma and cerebral spinal 
fluid reveals statistical significance of changes in mass spectrometry–
based metabolomics data. Anal. Chem. 81, 8538–8544 (2009).

36. Kalisiak, J. et al. Identification of a new endogenous metabolite and the 
characterization of its protein interactions through an immobilization 
approach. J. Am. Chem. Soc. 131, 378–386 (2009).

37. Wise, L.H., Lanchbury, J.S. & Lewis, C.M. Meta-analysis of genome 
searches. Ann. Hum. Genet. 63, 263–272 (1999).

38. Evangelou, E., Maraganore, D.M. & Ioannidis, J.P. Meta-analysis in 
genome-wide association datasets: strategies and application in Parkinson 
disease. PLoS ONE 2, e196 (2007).

39. Want, E.J., Nordstrom, A., Morita, H. & Siuzdak, G. From exogenous to 
endogenous: the inevitable imprint of mass spectrometry in metabolomics. 
J. Proteome Res. 6, 459–468 (2007).

40. Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature 
detection for high-resolution LC/MS. BMC Bioinformatics 9, 504  
(2008).

41. Prince, J.T. & Marcotte, E.M. Chromatographic alignment of ESI-LC-MS 
proteomics data sets by ordered bijective interpolated warping.  
Anal. Chem. 78, 6140–6152 (2006).

42. Masson, P., Spagou, K., Nicholson, J.K. & Want, E.J. Technical and 
biological variation in UPLC-MS–based untargeted metabolic profiling of 
liver extracts: application in an experimental toxicity study on 
galactosamine. Anal. Chem. 83, 1116–1123 (2011).


