
Metabolites are small molecules that are 
chemically transformed during metabolism 
and, as such, they provide a functional 
readout of cellular state. Unlike genes 
and proteins, the functions of which are 
subject to epigenetic regulation and post-
translational modifications, respectively, 
metabolites serve as direct signatures of 
biochemical activity and are therefore 
easier to correlate with phenotype. In this 
context, metabolite profiling, or meta-
bolomics, has become a powerful approach 
that has been widely adopted for clinical 
diagnostics.

 The metabolome — typically defined as 
the collection of small molecules produced 
by cells — offers a window for interrogatin g 
how mechanistic biochemistry relates to 
cellular phenotype. With developments in 
mass spectrometry, it is now possible to 
rapidly measure thousands of metabolites 
simultaneously from only minimal amounts 
of sample1. In particular, recent innovations 
in instrumentation, bioinformatic tools 
and software enable the comprehensive 
analysi s of cellular metabolites without 
bias. In many instances, these metabolites 
can be spatially localized within biological 
specimen s with imaging mass spectrometry2,3.

The application of these technologies 
has revealed system-wide alterations of 
unexpected metabolic pathways related to 
phenotypic perturbations. Moreover, many 

of the molecules detected are currently 
not included in databases and metabo-
lite repositories, indicating the extent to 
which our picture of cellular metabolism 
is incomplete4,5. Nonetheless, the field 
of metabolomics has made remarkable 
progress within the past decade and has 
implemented new tools that have offered 
mechanistic insights by allowing for the 
correlation of biochemical changes with 
phenotype.

 In this Innovation article, we first define 
and differentiate between the targeted and 
untargeted approaches to metabolomics. 
We then highlight the value of untargeted 
metabolomics in particular and outlin e 
a guide to performing such studies. 
Finally, we describe selected applications 
of un targeted metabolomics and discuss 
their potential in cell biology.

Designing a metabolomic experiment
The first step in performing metabolomics 
is to determine the number of metabolites 
to be measured. In some instances, it may 
be of interest to examine a defined set of 
metabolites by using a targeted approach. 

In other cases, an untargeted or global 
approach may be taken in which as many 
metabolites as possible are measured and 
compared between samples without bias. 
Ultimately, the number and chemical 
composition of metabolites to be studied 
is a defining attribute of any metabolomic 
experiment and shapes experimental design 
with respect to sample preparation and 
choice of instrumentation.

Targeted metabolomics. This approach 
refers to a method in which a specified 
list of metabolites is measured, typically 
focusing on one or more related path-
ways of interest6. Targeted metabolomic 
approaches are commonly driven by a 
specific biochemical question or hypo-
thesis that motivates the investigation of a 
particular pathway (FIG. 1a). This approach 
can be effective for pharmacokinetic studies 
of drug metabolism as well as for measur-
ing the influence of therapeutics or genetic 
modifications on a specific enzyme7. 
Developments in mass spectro metry and 
nuclear magnetic resonanc e (NMR) offer 
distinct advantages for performing tar-
geted metabolomic studies because of 
their specificity and quantitative reproduc-
ibility; however, there are many analytical 
tools available for measuring metabolites 
that could in principle be considered, 
such as ultraviolet-visible spectroscopy 
and flame ionization. Although the term 
‘metabolomics’ was only recently coined, 
examples of targeted studies of metabo-
lites date back to the earliest of scientific 
inquiries8–12. Therefore, there is a wealth of 
literature investigating optimal protocols 
for the sample preparation and analysis of 
specifi c classes of metabolites that has been 
discusse d extensively elsewhere13–17.

 Not to diminish their significance, 
targeted approaches have undoubtedly 
played an important part in the develop-
ment of the field of metabolomics. In parti-
cular, advances have been made in using 
tripl e quadrupole (QqQ) mass spectrometry 
to perform selected reaction monitoring 
experiments such that routine methods 
are now available for analysing most of the 
metabolites in central carbon metabolism, 
as well as amino acids and nucleotides at 
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their naturally occurring physiological 
concentrations18–20. These developments 
provide a highly sensitive and robust 
method for measuring a significant number 
of biologically important metabolites with 
relatively high throughput. Additionally, 
QqQ mass spectrometry methods are 
quantitatively reliable and therefore offer 
opportunities to achieve absolute quanti-
fication of low-concentration metabolites 
that are difficult to detect with less sensi-
tive methods such as NMR (FIG. 1a). By 
applying QqQ mass spectrometry-based 
methods to human plasma, targeted lists 
of metabolites can be screened as potential 
metabolic signatures for disease. For exam-
ple, targeted screening recently revealed 
citric acid metabolites and a small group of 
essential amino acids as metabolic signa-
tures of myocardial ischaemia and diabetes, 
respectively21,22. In another diabetes-related 
study, targeted metabolomic methods 
were used to investigate patient response 
to glucose challenge23. Here, the levels of 
specific plasma metabolites were measured 
after glucose ingestion to determine insulin 
response in patients.

Untargeted metabolomics. Untargeted 
metabolomic methods are global in scope 
and have the aim of simultaneously measur-
ing as many metabolites as possible from 
biological samples without bias (FIG. 1b). 
Although untargeted metabolomics can be 
performed by using either NMR or mass 
spectrometry technologies, liquid chroma-
tography followed by mass spectrometry 
(LC/MS) enables the detection of the most 
metabolites and has therefore been the 
technique of choice for global metabolite 
profiling efforts24–27. By using LC/MS-based 
metabolomic methods, thousands of peaks 
can be routinely detected from biological 
samples14,28,29 (FIG. 1b). Each of these peaks is 
referred to as a metabolite feature and corre-
sponds to a detected ion with a unique mass-
to-charge ratio and a unique retention time 

(it should be noted that some metabolite s 
may produce more than one peak).

 In contrast to targeted metabolomic 
results, untargeted metabolomic data sets 
are exceedingly complex, with file sizes on 
the order of gigabytes per sample for some 
new high-resolution mass spectrometry 
instruments. Manual inspection of the 
thousands of peaks detected is impractical 
and is complicated by experimental drifts 
in instrumentation. In LC/MS experi-
ments, for example, there are deviations in 
retention time from sample to sample as a 
consequence of column degradation, sample 
carryover, small fluctuations in room tem-
perature and mobile phase pH, as well as 
other variations. Although these challenges 
initially presented substantial obstacles 
for interpreting untargeted profiling data, 
major progress has been made in the past 
decade such that the ability to measure 
dysregulated peaks in global metabolomic 
data sets has now become routine with the 
introduction of metabolomic software such 
as MathDAMP, MetAlign, MZMine and 
XCMS1,30–34. These accomplishments have 
already revealed that an astounding number 

Figure 1 | The targeted and untargeted workflow for LC/MS-based 
metabolomics. a | In the triple quadrupole (QqQ)-based targeted metab-
olomic workflow, standard compounds for the metabolites of interest are 
first used to set up selected reaction monitoring methods. Here, optimal 
instrument voltages are determined and response curves are generated 
for absolute quantification. After the targeted methods have been estab-
lished on the basis of standard metabolites, metabolites are extracted from 
tissues, biofluids or cell cultures and analysed. The data output provides 
quantification only of those metabolites for which standard methods have 
been built. b | In the untargeted metabolomic workflow, metabolites are 

first isolated from biological samples and subsequently analysed by liquid 
chromatography followed by mass spectrometry (LC/MS). After data acqui-
sition, the results are processed by using bioinformatic software such as 
XCMS to perform nonlinear retention time alignment and identify peaks 
that are changing between the groups of samples measured. The m/z 
value s for the peaks of interest are searched in metabolite databases to 
obtain putative identifications. Putative identifications are then confirmed 
by comparing tandem mass spectrometry (MS/MS) data and retention time 
data to that of standard compounds. The untargeted workflow is global in 
scope and outputs data related to comprehensive cellular metabolism.

The untargeted 
[metabolomic] workflow is 
global in scope and outputs 
data related to comprehensive 
cellular metabolism.
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of metabolites remain uncharacterized with 
respect to their structure and function and, 
furthermore, that many of these unchar-
acterized metabolites change as a function 
of health and disease4. It is in this area that 
untargeted metabolomics has great potential 
to provide insights into fundamental biolog-
ical processes. The remainder of this article 
will focus on the untargeted metabolomi c 
approach.

Impetus for untargeted metabolomics. In 
1941, G. Beadle and E. L. Tatum proposed 
the one gene–one enzyme hypothesis35. This 
hypothesis was based on their experimental 
results showing that X-ray-induced mutant 
strains of the fungus Neurospora crassa 
were unable to carry out specific biochemi-
cal reactions35,36. By systematically adding 
individual compounds to minimal N. crassa 
media and screening for those that rescue d 
the growth of mutant strains, Beadle and 
Tatum identified metabolites whose bio-
synthesis had been affected by genetic 
mutation. In doing so they were the first to 
directly connect genotype to phenotype at 
the molecular level. From their results they 
purported that a single gene serves as the 
primary control of a single function, in this 
case a specific biosynthetic reaction.

 In many ways, modern day metabolomic 
experiments are similar in that they seek 
to connect genotype and phenotype by 
metabolite screening (FIG. 2a). The experi-
mental screening methods used today, 
however, are much advanced and allow us 
to study many more compounds simultane-
ously. Additionally, contemporary metabolic 
profiling experiments have the advantage of 
being complemented by genomic sequenc-
ing and proteomic screening37–40. The field 
of systems biology has emerged from the 
combination of these global analyses and 
has shown us that the effects of a single, 
non-lethal gene mutation can be dauntingl y 
large41. Indeed, single gene mutations can 
affect a considerable number of metabolic 
pathways, thereby complicating the hypo-
thesis that a single gene controls a single 
function (FIG. 2b). Moreover, mutations in 
some unique genes have unexpected pheno-
typic effects. As an example, consider the 
abnormal dauer formation (daf-2) gene, 
which encodes an insulin-like recepto r 
in the nematode worm Caenorhabditis 
elegans. Mutations in daf-2 cause C. elegans 
to live more than twice as long as its wild-
type counterpart and result in alterations 
in the abundance of at least 86 identified 
proteins42,43. Or, as another example, con-
sider genes that encode for enzymes of 

the phosphoinositide 3-kinase family. The 
protein products of these genes function in 
cell growth, proliferation, differentiation, 
motility and signal transduction, and muta-
tions in these genes are thought to have an 
oncogenic role in some cancers44.

 As these examples highlight, one gene 
can influence a multitude of metabolic 
pathways and thereby have a functional role 
in many cellular processes. Even knowl-
edge of encoded protein structure is often 
insufficient to infer function at the whole-
organism level. Such functions can have 
intricate regulatory mechanisms involving 
epigenetic control, post-translational modi-
fications and feedback loops that enable 
context-dependent activation or deactiva-
tion (FIG. 2a). Thus, investigations aimed at 
detangling the role of any one specific gene 
benefit from systems-level analyses. These 
types of global studies were once limited to 
genes, transcripts and proteins, but techno-
logical developments over the past decade 

now allow for the untargeted profiling of 
metabolites and provide opportunities to 
comprehensively track metabolic reactions 
directly for the first time (FIG. 2b).

Untargeted metabolomic workflow
Although untargeted metabolomic experi-
ments are often hypothesis generating rather 
than hypothesis driven, it is important to 
carefully construct an experimental design 
that maximizes the number of metabolites 
detected and their quantitative reproduc-
ibility. With the workflow that is described 
below, metabolite identification is a manual 
and time-intensive process. Thus, the 
choice of sample type, preparation, chro-
matographic separation and analytical 
instrumentation should be considered and 
the choice that is most likely to yield high-
quality data used for analysis. Here, we focus 
on an LC/ MS-based workflow because this 
technique enables the detection of the high-
est number of metabolites and requires only 

Figure 2 | The central dogma of biology and the omic cascade. a | Whereas genes and proteins 
are subject to regulatory epigenetic processes and post-translational modifications, respectively, 
metabolites represent downstream biochemical end products that are closer to the phenotype. 
Accordingly, it is easier to correlate metabolomic profiles with phenotype compared to genomic, tran-
scriptomic and proteomic profiles. b | A schematic of a metabolic pathway. Metabolites are repre-
sented as circles, the levels of which can be measured by mass spectrometry. An alteration in a single 
enzyme can lead to a cascade of metabolic perturbations. Here, metabolites whose levels are altered 
in each of three theoretical genotypes are shown by coloured circles. Orange, light blue, and green 
circles represent metabolites altered in genotype 1, genotype 2 and genotype 3, respectively. 
Metabolites whose levels are similarly altered in multiple genotypes are represented by multi-coloured 
circles. These shared alterations may be useful in identifying phenotypically important biochemical 
perturbations.
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minimal amounts of sample (for example, 
typically less than 25 mg of tissue, around 
1 million cells or approximately 50 μL of 
biofluid s such as plasma and urine).

Sample preparation and data acquisition. 
The first step in the untargeted metabo-
lomic workflow is to isolate metabolites 
from biological samples (FIG. 1b). Several 
approaches involving sample homogeniza-
tion and protein precipitation have been 
used, and these are described in detail else-
where14,15,45,46. Prior to mass spectrometry 
analysis, isolated metabolites are separated 
chromatographically by using relatively 
short solvent gradients (on the order of 
minutes) that allow for high-throughput 
analysis of large numbers of samples. The 
physiochemica l landscape of the metabo-
lome is highly hetero geneous, so to increase 
the number of compounds detected, multi-
plexed methods for the extraction and sepa-
ration of metabolites are used47. For example, 
extracting the same cells with both organic 
and aqueous solvents increases the number 
of hydrophobic and hydrophilic compounds 
observed, respectively. Similarly, reversed-
phase chromatography is better suited for 
the separation of hydrophobic metabolites, 
whereas hydrophili c-interactio n chromatog-
raphy generally separates hydrophilic com-
pounds more effectively. Most frequently, 
data is collecte d on a quadrupole time-of-flight 
(QTOF) mass spectrometer or an Orbitrap 
mass spectrometer, but other time-of-
flight and ion trap instruments can also be 
used28,29,48. Given the challenge of predicting 
tandem mass spectrometry (MS/ MS) frag-
mentation patterns for most metabolites, 
untargeted meta bolomic profiling data are 
typically acquired in MS1 mode (that is, only 

the mass-to-charge ratio (m/z) of the intact 
metabolite is measured)49,50, unlike the  
alternating MS1 and MS/MS mode used  
in shotgu n omic approaches.

Data analysis. With recent developments 
in bioinformatic tools, identification of 
metabolite peaks that are differentially 
altered between sample groups has become 
a relatively automated process. Several 
metabolomic software programs that pro-
vide a method for peak picking, nonlinear 
retention time alignment, visualization, 
relative quantification and statistical analy-
sis are available1,51. The most widely used 
metabolomic software is XCMS, which 
is freely available online and allows users 
to upload data, perform data processing 
and browse results within a web-based 
interface1.

Metabolite identification. It is important 
to note that the metabolomic software cur-
rently available does not output metabolite 
identifications. Rather, it provides a table 
of features with p-values and fold changes 
related to their difference in relative inten-
sity between samples. To determine the 
identity of a feature of interest, the accurate 
mass of the compound is first searched in 
metabolite databases such as the Human 
Metabolome Database and METLIN52–54. 
A database match represents only a putative 

metabolite assignment that must be con-
firmed by comparing the retention time 
and MS/MS data of a model compound 
to that from the feature of interest in the 
research sample (FIG. 3). Currently, MS/MS 
data for features selected from the profil-
ing results are obtained from additional 
experiments, and matching of MS/MS frag-
mentation patterns is performed manually 
by inspection. These additional analyses 
are time intensive and represent the rate-
limitin g step of the untargeted metabo-
lomic workflow. Additionally, although 
metabolite databases have grown consid-
erably over the past decade, a substantial 
number of metabolite features detected 
from biological samples do not return any 
matches. Identification of these unknown 
features requires de novo characterization 
with traditional methods. Taken together, 
it should be recognized that comprehensive 
identification of all metabolite features 
detected by LC/MS is currently impractical 
for most samples analysed.

Addressing the challenges
Untargeted metabolomics has revealed that 
the number of endogenous metabolites 
in biological systems is larger than antici-
pated and cannot be accounted for merely 
by canonical biochemical pathways. That 
is, the masses of a significant fraction of 
compounds detected in global analyses 
do not match any of the masses included 
in metabolite databases. Therefore, given 
that the metabolome is not encoded in 
the genome in the same way as proteins 
and transcripts, systems-level studies of 
metabolites are complicated by attempting 
to analyse an undefined set of molecules. 
In response to this challenge, metabolite 

Figure 3 | Metabolite characterization in the untargeted metabolomic 
workflow. In liquid chromatography followed by mass spectrometry 
(LC/ MS)-based untargeted metabolomics, metabolites are structurally char-
acterized on the basis of accurate mass, retention time and tandem mass 
spectrometry (MS/MS) data according to the workflow shown. First, m/z 

values of interest are searched in metabolite databases. When a hit is returned 
within the expected error of the mass spectrometer, the retention time and 
MS/MS data of a standard compound is compared to that from the biological 
sample. Standard data may be available in a metabolite database such as the 
Human Metabolome Database and METLIN or generated experimentally.

our understanding of 
metabolism is evolving much like 
our notion of physics evolved in 
the early twentieth century
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databases have expanded rapidly over the 
past decade. Although database expansion 
has facilitated untargeted studies, there are 
still many metabolites for which the chemi-
cal structure, cellular function, biochemical 
pathway and anatomical location remain 
uncharacterized. Here, innovative tech-
nologies and experimental strategies that 
can be coupled with untargeted profiling 
are drivin g progress in the field.

Improving metabolite databases. Over 
the past decade, the information cata-
logued in metabolite databases has evolved 
beyond lists of one-dimensional data 
that are traditionally acquired by mass 
spectrometry- and NMR-based screens. 
The Human Metabolome Database, for 
example, includes a ‘MetaboCard’ for each 
of its included metabolites (~8,550)52,53. 
In addition to having molecular weights 
and experimental NMR spectra, the 
MetaboCards list information on each 
compound’s biochemical pathway, concen-
tration, anatomical location, metabolizing 
enzymes and related disorders when avail-
able. Currently, the Human Metabolome 
Database and METLIN are among the most 
widely used metabolite databases publicly 
available54. Like the Human Metabolome 
Database, METLIN contains experimental 
data for a subset of the total number of 
compounds included (~45,000), having 
MS/MS data available for more than 10,000 
metabolites. For each of these metabolites, 
MS/MS data were experimentally gener-
ated from model compounds analysed at 
four different collision energies in both 
positive and negative mode. When used 
together with other publicly available tools, 
the Human Metabolome and METLIN 
databases can facilitate both metabolite 
identificatio n and data interpretation.

Meta-analysis: prioritizing unknowns. 
Alterations in a single enzyme can lead to a 
cascade of metabolic perturbations that are 
functionally unrelated to the phenotype of 
interest. Untargeted metabolomic profiling 
of a particular disease or mutant can there-
fore reveal hundreds of alterations that are 
unlikely to have mechanistic implications. 
Given the resources needed to identify both 
known and unknown compounds, strate-
gies to reduce lists of potentially interesting 
features before committing to identifying 
them are of great utility. One such strateg y 
is meta-analysis, in which untargeted profil-
ing data from multiple studies are compared 
(FIG. 2b). By comparing multiple models of 
a disease, for example, features that are not 

similarly altered in each of the comparisons 
may be de-prioritized as being less likely 
to be related to the shared pheno typic 
pathology. To automate the comparison of 
untargeted metabolomic data, freely avail-
able software called metaXCM S has been 
recently developed55. As proof of concept, 
metaXCMS was applied to investigate 
three pain models of different pathogenic 
aetiologie s: inflammation, acute heat and 
spontaneous arthritis56. Although hun-
dreds of metabolite features were found to 
be altered in each model, only three were 
similarly dysregulated among all the groups. 
One of the shared metabolites was identified 
as histamine, a well-characterize d mediator 
of pain that works by several mechanisms. 
The application of similar data-reduction 
strategies to other biological systems may 
justify aggressive analytical investigations 
of unknown features that are likely to be 
physiologicall y relevant.

Imaging approaches for localizing 
metabolite s. One of the first steps in the 
untargeted metabolomic workflow applied 
to biological tissue is metabolite isolation 
by sample homogenization. Thus, standard 
metabolic profiling techniques do not per-
mit high-resolution spatial localization of 
metabolites within samples. Investigations 
of heterogeneous tissues such as the brain 
are therefore complicated by the averaging 
of various cell types, each with a potentially 
unique metabolome. Given these limita-
tions, correlating a dysregulated metabolite 
with a specific region of tissue or cell type 
can be challenging.

NMR-based imaging technologies have 
been applied to spatially localize metabo-
lites in intact samples, but these methods 
have limited chemical specificity and sensi-
tivity57–59. By contrast, mass spectrometry- 
based approaches relying on matrix-assisted 
laser desorption ionization (MALDI) offer 
improved chemical specificity and sensi-
tivity, but they are limited in their applica-
tion to metabolites owing to background 
interference caused by the matrix in the 
low-mass region that is characteristic of 
metabolites60. As an alternative, a matrix-free 
technique called nanostructure-initiator mass 
spectrometry (NIMS) has been developed 
for the analysis of metabolites with high 
sensitivity and spatial resolution61,62 (FIG. 4). 
By using NIMS to analyse 3 μm sections of 
brain tissue from mice with impaired cho-
lesterol biosynthesis, metabolic precursors 
of cholesterol were found to localize to the 
cerebellum and brainstem2. These types of 
NIMS imaging applications coupled with 
histology will allow metabolite localiza-
tion patterns to be correlated with tissue 
pathology and drive developments in our 
understandin g of chemical physiology.

Untargeted metabolomics applied
Given its sensitivity, high throughput and 
minimal sample requirements, untargeted 
metabolomics has wide applicability across 
a myriad of biological questions. Despite its 
relatively recent emergence as a global pro-
filing technology, untargeted metabolomics 
has already increased our understanding 
of comprehensive cellular metabolism 
and has been used to address a number of 

Figure 4 | Spatial localization of metabolites in tissue by mass spectrometry-based imaging. 
An example of a surface-based image of cholesterol from mouse brain obtained by using nanostructure- 
initiator mass spectrometry (NIMS)2. NIMS is well suited for metabolite imaging because it is highly 
sensitive and does not suffer from matrix interference in the low-mass range. Sections of frozen tissue 
are first transferred to a NIMS chip that is subsequently analysed by using a laser-induced desorption 
and ionization approach. By systematically rastering the laser across the tissue, a mass spectrum is 
generated from each point. The mass spectral intensity of the metabolite of interest is plotted spatially 
to generate images, as shown here for cholesterol.
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biomedical issues. In particular, it has been 
useful in identifying altered metabolic path-
ways in disease that represent novel drug 
targets: an evolving biomedical application 
referred to as ‘therapeutic metabolomics’ 
(REF. 63). An example of this application 
is the discovery of increased levels of the 

metabolite 2-hydroxyglutarate in cancer cells 
with isocitrate dehydrogenase 1 mutations, 
which are a common feature of a major 
subset of primary human brain cancers64. 
These results suggest that inhibition of 
2-hydroxyglutarate production may be an 
effective therapeutic approach to slow or 
halt conversion of a low-grade glioma into 
lethal secondary glioblastoma. In another 
example, levels of the sphingolipid dimethyl-
sphingosine were found to be increased 
in the spinal cords of rats suffering from 
neuropathic pain65. Increased levels of 
dimethylsphingosine were determined to 
induce pain-like behaviour in vivo and point 
to the inhibition of methyltransferase or cera-
midase as potential therapeutic approaches 
for treating chronic pain by blocking 
dimethylsphingosin e production.

 Another area in which untargeted 
metabolomics has been successfully applied 
is in characterizing gene and protein func-
tion. In addition to successfully identifying 
the function of unknown genes and proteins, 
untargeted profiling has been applied to 
discover new functions for known genes and 
proteins. By screening for metabolites that 
accumulate after gene mutation or enzyme 
inhibition, unanticipated connections 
between the proteome and metabolome have 
been established that were not accurately pre-
dicted from in vitro activity measurements66. 
For example, to characterize a yeast gene of 
unknown function (YKL215C), untargeted 
methods were applied to organisms harbour-
ing a mutation in YKL215C. Increased levels 
of 5-oxoproline were detected in these organ-
isms, allowing the assignment of YKL215C 
as an oxoprolinase48. In another example, 
an untargeted screen identified a previously 
unidentified activity for the yeast enzyme 
sedoheptulose-1,7-bisphosphatase. The find-
ing that sedoheptulose-1,7-biosphosphatase 
hydrolyses sedoheptulose-1,7-bisphosphate 
to sedoheptulose-7-phosphate identified a 
thermodynamically driven route from trioses 
produced by glycolysis to the synthesis of 
ribose67. A similar type of enzyme-activity 
characterization was also accomplished for 
Mycobacterium tuberculosis by incubating a 
purified recombinant enzyme with a myco-
bacterial small molecule extract. The small 
molecule extract was analysed by LC/MS for 
altered substrate and product, resulting in the 
incompletely characterized protein Rv1248c 
being assigned as a 2-hydroxy-3-oxoadipate 
synthase68. As these examples highlight, 
untargeted metabolomics has implications 
not only for therapeutic screening but also 
for providing chemical insight across a broad 
area of mechanistic cell biology.

Concluding remarks
Although there has been a long-standing 
interest in metabolic profiling, only recently 
have technologies emerged that enable the 
global analysis of metabolites at a systems 
level, comparable to its omic predecessors. 
Unlike genomics, transcriptomics and pro-
teomics, however, metabolomics provides 
a tool for measuring biochemical activit y 
directly by monitoring the substrates and 
products transformed during cellular 
metabolism. Untargeted profiling of these 
chemical transformations at a global level 
serves as a phenotypic readout that can be 
used effectively in diagnosing pathologies, 
identifying therapeutic targets of disease 
and investigating the mechanisms of 
fundamenta l biological processes. 

 Although untargeted metabolomics is 
still in its infancy, early studies have shown 
that the complexity of cellular metabo-
lism exceeds that expected on the basis 
of classical biochemical pathways. In this 
sense, our understanding of metabolism is 
evolving much like our notion of physic s 
evolved in the early twentieth century with 
the emergence of experimental results 
such as the photoelectric effect, which 
could not be explained by Newtonian 
laws69,70. Ultimately, the ideas that emerged 
from this disparity resulted in a new set 
of principles for understanding physical 
phenomena known as quantum mechan-
ics. As meta bolomic technologies continue 
to advance and facilitate the characteriza-
tion of unknown pathways, the potential 
of untargeted metabolomics to shape our 
understanding of global metabolism is yet 
to be fully realized.
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