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ABSTRACT: Global metabolomics describes the comprehen-
sive analysis of small molecules in a biological system without
bias. With mass spectrometry-based methods, global metab-
olomic data sets typically comprise thousands of peaks, each of
which is associated with a mass-to-charge ratio, retention time,
fold change, p-value, and relative intensity. Although several
visualization schemes have been used for metabolomic data,
most commonly used representations exclude important data
dimensions and therefore limit interpretation of global data
sets. Given that metabolite identification through tandem mass
spectrometry data acquisition is a time-limiting step of the
untargeted metabolomic workflow, simultaneous visualization
of these parameters from large sets of data could facilitate
compound identification and data interpretation. Here, we present such a visualization scheme of global metabolomic data using
a so-called “cloud plot” to represent multidimensional data from septic mice. While much attention has been dedicated to lipid
compounds as potential biomarkers for sepsis, the cloud plot shows that alterations in hydrophilic metabolites may provide an
early signature of the disease prior to the onset of clinical symptoms. The cloud plot is an effective representation of global mass
spectrometry-based metabolomic data, and we describe how to extract it as standard output from our XCMS metabolomic
software.

■ INTRODUCTION

Global Metabolomics and Metabolite Identification.
With modern day mass spectrometers, particularly those
interfaced with liquid chromatography, it is possible to detect
thousands of peaks from the metabolic extract of a single
biological sample.1,2 These peaks correspond to a range of
physiochemically distinct small molecules such as lipids, central
carbon metabolites, sugars, amino acids, etc.3,4 The objective of
untargeted metabolomics is to comprehensively survey as many
metabolites as possible and maximize the number of peaks
detected to construct a global profile.5 Although these global
profiles are information rich, they are also exceedingly complex
and therefore difficult to interpret intuitively.
While global metabolomic profiles consist of thousands of

peaks, it is impractical with current methods to identify each
feature since structural identification is a time-demanding and
labor-intensive process requiring both accurate mass measure-
ments and tandem mass spectrometry analysis. Although
accurate mass measurements can be readily acquired for each

peak and used to make putative metabolite assignments,
accurate mass measurements alone are insufficient to
structurally identify metabolites given the number of isobaric
small molecules as well as the number of small molecules that
cannot be resolved with the mass accuracy of many mass
analyzers commonly used for metabolomics (Figure 1).6,7

Tandem mass spectra provide structural data that are essential
to increase the confidence of metabolite identifications. As
supported by an analysis of the tandem mass spectra of
metabolites included in the METLIN metabolite database, by
matching the tandem mass spectra of research samples to the
tandem mass spectra of model compounds, the number of
false-positive metabolite assignments can be minimized (Figure
1).8 Due to limitations in resources and acquisition speeds,
however, it is currently impractical to acquire high-quality
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tandem mass spectra for each of the thousands of peaks
detected, and therefore, investigators typically select only a
subset of compounds for structural identification. Often, the
peaks are selected on the basis of statistical thresholds where
peaks are chosen whose average integrated areas are changing
significantly in one sample group compared to another. When
the sample groups being compared are greatly different,
however, the number of peaks changing can be large.9 The
latter may be especially true when comparing different cell
types or when investigating a pathology that causes systemic
metabolic imbalances.10 In these instances, which peaks to
structurally characterize might be ambiguous based on statistics
alone and provide only a limited perspective of what is
occurring in overall cellular metabolism.
This workflow for processing untargeted metabolomic data,

as outlined above, limits interpretation of the results on a global
scale. Accordingly, to represent the comprehensive nature of
the data set, several visualizations are often used such as

principal component analysis, heat maps, scatter plots, and
volcano plots.10−14 Principal component analysis (PCA) is a
classical statistical technique that mathematically transforms
data variables in an attempt to visually cluster sample groups;
however, detailed information about individual features is not
represented. Heat maps do show the relative intensity of
features from each sample group, but generally, each row is
individually normalized and fold changes therefore cannot be
extracted. Additionally, a heat map for all of the features in a
global metabolomic data set is typically too large to include in a
publication or presentation. Scatter plots show the relative
intensity of a feature in each sample of a pairwise comparison,
from which the relative fold change can be deduced. Volcano
plots are a variant of a scatter plot that also incorporate p-value
into the representation in addition to fold change, yet volcano
plots do not provide information about feature intensity and
retention time. Thus, while each of these visualization
techniques may provide some context-dependent insight,
none of the approaches simultaneously represents all of the
data parameters that are often important for the interpretation
of metabolomic results. Moreover, these traditional visual-
izations are not effective in highlighting features that are of
interest to target for further structural characterization.
Data characteristics of interest to metabolomic investigators

are the p-value, fold change, retention time, mass-to-charge
ratio, and signal intensity of features. Here, we introduce a
visualization tool, called the cloud plot, which simultaneously
represents all of these data characteristics. The utility of the
cloud plot for interpreting untargeted metabolomic results is
demonstrated for septic mice. Additionally, a method for
generating a cloud plot from metabolomic data using the
XCMS Online software is described.

Sepsis. Sepsis is a complex disorder with high mortality
rates and is a leading cause of death in intensive care units.15

Multiple signaling molecules have been implicated in the

Figure 1. Number of metabolite hits from the METLIN database as a
function of mass error alone and as a function of mass error combined
with tandem mass spectrometry (MS/MS) data. The plot is based on
3 independent analyses using over 5000 MS2 measurements and 40
000 accurate masses in the METLIN database.

Figure 2. Cloud plot of sepsis data set, 487 features with p-value ≤1.0 × 10−4 and fold change ≥3 includes visualization of the p-value, the directional
fold change, the retention time, and the mass-to-charge ratio of features. Also shown are the total ion chromatograms for each sample and the time-
dependent composition of the mobile phase. Features whose intensity is increased are shown on the top plot in blue, whereas features whose
intensity is decreased are shown on the bottom plot in yellow. The size of each bubble corresponds to the log fold change of the feature: the larger
the bubble, the larger the fold change. The statistical significance of the fold change, as calculated by a Welch t test with unequal variances, is
represented by the intensity of the feature’s color where features with low p-values are brighter compared to features with high p-values. The y
coordinate of each feature corresponds to the mass-to-charge ratio of the compound as determined by mass spectrometry. Each feature is also color
coded such that features that are shown with a black outline have database hits in METLIN, whereas features shown without a black outline do not
have database hits.
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pathogenesis of sepsis. The initial stage of the condition is
characterized by excessive immune activation, which leads to
the release of pro-inflammatory cytokines such as tumor
necrosis factor (TNF-α) and interleukin-1 (IL-1).16 This early
exaggerated pro-inflammatory response in sepsis is followed by
profound immunosuppression characterized by release of anti-
inflammatory cytokines such as interleukin-10 (IL-10) and
transforming growth factor (TGF-β).17 Dysregulatoin of
systemic immune responses is also accompanied by activation
of the hypothothalamic−pituitary−adrenal axis, which triggers
the release of cortisol from the adrenal glands. Cortisol displays
potent anti-inflammatory effects on macrophages, monocytes,
and neutrophils, and activation of this system further
suppresses innate immune responses to microbial infection.18

Lipid mediators have also been associated with organ
dysfunction and coagulation defects that occur during sepsis.
Specifically, platelet activating factor (PAF) is a phospholipid-
derived signaling molecule that exerts pro-inflammatory effects
on immune cells such as neutrophils and platelets.19,20 Release
of PAF has been shown to increase vascular permeability in the
lungs during endotoxin treatment that was dependent on the
production of ceramide.21

The dysfunctional immune response characteristic of sepsis
and septic shock are accompanied by profound alterations in

cellular metabolism involving glucose, lipids, and proteins.
Increased glucose utilization as well as the up-regulation of
protein catabolism occurs in response to metabolic stress
induced by severe infection.22,23 Furthermore, increased lipids
in blood, termed “lipemia of sepsis”, results from TNF or
catecholamine-stimulated lipolysis.24,25 Taken together, these
results suggest that metabolites dysregulated in response to
altered energetic pathways may provide important diagnostic
markers for disease prediction and patient stratification.

■ EXPERIMENTAL SECTION

C57BL/6 mice were maintained according to institutional
animal care and use committee (IACUC) guidelines. Mice
received one intraperitoneal injection of lipopolysaccharide
(LPS) at a dose of 6 mg/kg. Mice were monitored for clinical
symptoms, and blood was drawn for metabolomic analysis 3 h
after injection.
Metabolites were extracted from blood with methanol using a

defined protocol that has been shown to effectively isolate a
range of metabolites, including water-soluble and lipophilic
compounds.26 First, 400 μL of cold methanol was added to 100
μL of sample and incubated at −20 °C overnight. After
centrifugation at 13 000 rpm for 15 min, the supernatant was
collected and dried in a SpeedVac at room temperature. The

Figure 3. Other common visualizations of metabolomic data: principal component analysis (a), scatterplot (b), heatmap (c), and volcano plot (d).
Here, these plots were constructed from the same metabolomic sepsis data visualized in Figure 2.
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samples were then resuspended in 50 μL of 50:50 water/
acetonitrile solution and transferred to liquid chromatography
vials for mass spectrometry analysis.
Liquid chromatography was performed using a reversed-

phase C18 column (Zorbax C18, Agilent, 5 μM, 150 × 0.5 mm

diameter column) with a flow rate of 20 μL/min. Samples were
analyzed in positive mode using electrospray ionization time-of-
flight mass spectrometry (Agilent 6520 QTOF) with water/
acetonitrile as mobile phases A/B, each containing 0.1% formic
acid. The gradient consisted of the following linear changes in

Table 1. Characteristics of the Respective Visualization Tools for Metabolomic Data Sets

Figure 4. XCMS Online screen shot showing the overview of results from an untargeted analysis. The top display panels include text on general job
information such data set names, parameter set names, and job date. The lower display panels are used to provide a global visualization of the
experimental results (labeled d−f) in addition to plots that can be used for quality control (labeled a−c,e,f). The display shows the overlay of total
ion chromatograms before (a) and after (c) retention time correction; the retention time correction curve (b); cloud plot (d); multidimensional
scaling (e); and principal component analysis (f).
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mobile phase B composition with time: 0 min, 10% B; 5 min,
10% B; 10 min, 40% B; 65 min, 98% B; 70 min, 98% B. The
order in which the samples were analyzed was randomized to
reduce error due to instrument variability. Each sample analysis
was followed by a wash to reduce possible carryover.
Data were analyzed using XCMS Online, which is freely

available at https://xcmsonline.scripps.edu/. Metabolomic
features are defined as ions with a unique m/z and retention
time. The cloud plot included for the data was exported directly
from XCMS Online.

■ RESULTS AND DISCUSSION

LPS treatment is known to activiate macrophages, and LPS
injection into mice is a widely used preclinical animal model to
study sepsis which was used here for investigation.27,28 The
model shares multiple similarities with human sepsis, including
increased release of TNF and IL-1.29,30 Furthermore, organ
damage is recapitulated after administration of LPS and
includes myocardial dysfunction in addition to lung injury.31,32

The reproducibility of this model allows for the identification of
metabolite markers associated with sepsis onset and pro-
gression.
In positive mode, we detected 29 920 features (i.e., ions with

a unique m/z and retention time), 487 of which were altered
between septic mice and healthy controls with fold changes
greater than 3 and p-values less than 1.0 × 10−4. Interestingly,
at the 3 h time point studied, no features were found to be
altered when the mobile phase consisted of more than 40%
acetonitrile (Figure 2). In reversed-phase chromatography,
compounds eluting at a high organic mobile phase are
hydrophobic. Although thousands of features were detected
in this region of the chromatogram, none of these features were
found to be altered between septic mice and healthy controls
with fold changes greater than 3 and p-values less than 1.0 ×
10−4.
Figure 2 provides a visualization of the data that includes the

p-value, the directional fold change, the retention time, and the
mass-to-charge ratio of features with fold changes greater than 3
and p-values less than 1.0 × 10−4. The visualization also shows
total ion chromatograms for each sample and the time-

dependent composition of the mobile phase. Each feature with
a fold change greater than 3 and a p-value less than 1.0 × 10−4

is represented as a circle. Features whose intensity is increased
in septic mice relative to healthy mice are shown on the top
plot in blue, whereas features whose intensity is decreased in
septic mice relative to healthy mice are shown on the bottom
plot in yellow. The size of each bubble corresponds to the log
fold change of the feature. The statistical significance of the fold
change, as calculated by a Welch t test with unequal variances,
is represented by the intensity of the feature’s color. That is,
features with low p-values are brighter compared to features
with high p-values. The y coordinate (specifically its absolute
value) of each feature corresponds to the mass-to-charge ratio
of the compound as determined by mass spectrometry. The x
coordinate of each feature corresponds to the retention time
that the compound elutes, which can be interpreted on the
basis of mobile-phase composition as represented by the
superimposed gradient plot. Each feature is also color coded.
Features that are shown with a black outline have database hits
in METLIN, whereas features shown without a black outline do
not have database hits and are therefore likely to be more
challenging to identify.
Sepsis, which is a leading cause of death in critically ill

patients, involves an extremely complex chain of physiological
events. Although much effort has recently focused on the role
of lipid molecules as drivers of the pathogenesis of the
syndrome and as potential biomarkers, our understanding of
sepsis remains incomplete and available biomarkers have
insufficient specificity and/or sensitivity to be used routinely
in clinical practice. Here, we compared the metabolic profile of
mice 3 h after they were challenged with LPS to healthy
controls. At the 3 h time point after LPS treatment, the mice
have yet to display clinical symptoms of sepsis. At this time
point, however, we did not identify any lipids to be altered with
statistical significance. Instead, as shown in Figure 2, we found
many water-soluble metabolites to be dysregulated.
These data highlight the value of the cloud plot for

visualizing untargeted metabolomic results. Other tools tradi-
tionally used to visualize metabolomic data do not similarly
emphasize the potential importance of water-soluble com-

Figure 5. Cloud plot of pain data, 277 features with p-value of ≤1.0 × 10−3 and fold change of ≥1.5. The cluster of dysregulated diacylglycerols,
whose identities were confirmed by tandem mass spectrometry, is represented by the blue box.
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pounds in the condition (Figure 3). While PCA shows that the
sample groups can be separated on the basis of the
metabolomic results, the plot does not offer biochemical
insight into the specific molecules involved. A heatmap
provides improved biochemical specificity but is not effective
at visualizing large data sets as shown here. A scatter plot and a
volcano plot provide the most descriptive global visualizations
but still exclude important data parameters such as m/z value
and retention time from which lipophilicity can be deduced.
The cloud plot includes these data while also showing the total
ion chromatogram, the chromatographic gradient, and a
representation of features that have database hits in METLIN.
Further, in future plots, the color of the circles could be used to
encode alternate information such as pathway inclusion or
associated expression data. A comparison of the characteristics
of these different plotting strategies is shown in Table 1. The
cloud plot shown in Figure 2 was exported directly from XCMS
Online. XCMS Online is a recently released web-based version
of the widely used XCMS software that is freely available at
https://xcmsonline.scripps.edu.33 This software enables users
to upload metabolomic data for processing with minimal
training. The software performs feature detection, retention
time correction, alignment, annotation, and statistical analysis
and provides a cloud plot of the results for visualization (Figure
4). Using XCMS Online, the results can be browsed
interactively within the cloud plot. That is, when users scroll
their mouse over features with METLIN database hits, these
putative assignments are displayed in a pop-up window. Cloud
plots can be downloaded directly from XCMS Online as zip
files for incorporation into publications, presentations, and
grants.
Cloud plots also have the potential to facilitate the structural

identification of some features. Some classes of metabolites, for
example, will lie in characteristic zones of the cloud plot. The
“clustering” of features into zones results from these classes of
compounds having similar retention times and m/z values. As
an example, we show a cloud plot from data we recently
published.34 Here, we compared spinal cord tissue from rats
suffering from neuropathic pain to spinal cord tissue from
control rats. As shown on the plot, we identified 8
diacylglycerols that were down-regulated in animals suffering
from neuropathic pain (the identities of these compounds were
verified with tandem mass spectrometry). These identified
diacylglycerols were localized to a unique region of the cloud
plot, which could prove useful for identifying diacylglycerols in
future studies using the same C18 chromatography and
gradient (Figure 5).

■ CONCLUSION
Cloud plots provide an effective visualization tool for global
metabolomic data by representing the p-value, the directional
fold change, the retention time, and the mass-to-charge ratio of
features with fold changes and p-values within a defined
threshold. Additionally, cloud plots show total ion chromato-
grams, chromatographic gradients, and features that have hits in
the METLIN metabolite database (Table 1). Unlike other
visualization tools traditionally used, cloud plots were designed
specifically to represent global metabolomic data sets in a more
intuitive scheme to facilitate interpretation and selection of
features for structural characterization. Here, we have used a
cloud plot to represent untargeted metabolomic results from
septic mice compared to healthy controls. Despite the attention
that has been dedicated to lipids, the data suggest that water-

soluble metabolites are important in the early stages of sepsis
pathogenesis and may serve as diagnostic markers. Cloud plots
can be generated using our freely available, web-based XCMS
Online software. The plots can be easily downloaded and used
in publications, presentations, and grants.
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