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drivers of Western innovation such as patents 
and publications, their economic goals may 
be better achieved by directing policy and 
translational funding to maximize drivers of 
non-Western innovation that are unique to 
their own territories.
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with a strong record of innovation in 
semiconductors and automobiles, also has 
very few biopharmaceutical inventors. 
Overall, the figures show that the locations of 
biopharmaceutical innovation have remained 
largely the same since 2000; clearly, most 
inventors reside in the United States, the 
legacy biopharmaceutical nations in Europe 
and in Japan.

The near-absence of patent inventorship 
(12 patent inventors in China and 9 in India 
versus >4,000 in the United States since 
2000) raises questions about the level of 
pharmaceutical innovation in these emerging 
economies. What’s more, the low level of 
R&D investment in these countries— 
according to the Pharmaceutical Researchers 
and Manufacturing Association, in 2010 US 
pharmaceutical R&D investments were  
$40.7 billion (80.2% of the global total), 
Chinese investments were $142 million 
(0.3% of the global total) and Indian 
investments were $43.9 million (0.1% of the 
global total)5—adds further doubt to the 
innovative capacity of these countries. For 
these emerging economies to achieve future 
growth in innovation similar to that seen 
in developed economies, clearly a larger 
corps of inventors and much increased R&D 
investment will be necessary.

Another explanation for the low output 
is that innovation in emerging economies is 
fundamentally different from the proprietary 
model of Western biopharmaceutical 
innovation, which requires patenting and 
high levels of R&D investment upfront. If 
innovation in emerging economies really is 
different, neither inventorship of patents nor 
R&D investment would be a good proxy for 
innovation.

In this respect, a report from the 
Massachusetts Institute of Technology (MIT) 
Taskforce on Innovation and Production, 
contrasting product development in China 
and Germany, may be informative6. The task 
force made the following two observations. 
First, new business creation in Germany 
was not done through the start-up model 
familiar in the United States, but rather 
occurred “through the transformation of 
old capabilities and their reapplication, 
repurposing and commercialization.” 
Thus, the strength of German firms was in 
repurposing existing assets.

Second, the task force further observed 
that Chinese firms, by contrast, excelled in 
scale-up to mass-manufacturing “not because 
of low-cost labor, but because of their ability 
to move complex advanced product designs 
into production and commercialization.” This 
sentiment is echoed in Run of the Red Queen7, 

where the authors combined over  
200 interviews and industry analysis to 
conclude that in China process innovation, 
rather than product innovation, is central to 
economic growth.

Accordingly, one must consider that 
the contributions of China, and of other 
countries outside regions that have an already 
established biopharmaceutical sector, will be 
in areas beyond inventing new molecules; 
rather, their strengths may be in developing 
better tools and methods for research or 
in developing better methods to refine the 
patented inventions. China is a world leader 
in scientific publishing8 and in patent filings9, 
neither of which seem to be delivering 
proportional outputs. Chinese papers have 
low citations rates, both domestically and 
internationally7, and (as shown here) Chinese 
inventors appear on few patents covering 
globally marketed biopharmaceuticals. In 
other words, China’s current strategy appears 
to be based on promoting traditional outputs, 
which do not support its core strengths.

With the above factors in mind, 
governments in countries such as China 
and India that have a low rate of drug 
inventorship and a proven ability to reduce 
costs beyond simply providing low-cost 
manual labor may be directing their 
resources inappropriately. Rather than 
focusing policy and funding on historical 

Metabolomic data streaming for 
biology-dependent data acquisition
To the Editor:
Over the past 10 years, metabolomics 
has emerged as a powerful technology to 
interrogate cellular biochemistry at the 
global level. Although much of the success 
has been driven by advances in mass 
spectrometry, developments in bioinformatic 
resources for data processing have been 
equally important. The widely used 
metabolomic software XCMS, in particular, 
has undergone substantial improvements 
since its introduction in 2005 (ref. 1). In 
addition to improved algorithms for peak 
picking, retention-time alignment and 
data visualization, XCMS has transitioned 
from a command-line interface, requiring 
expertise in the R programming language, to 
a web-based platform with a graphical user 
interface2. This web-based platform, called 
XCMS Online, enables thousands of users to 
upload their metabolomic data and perform 

cloud-based processing.
Cloud-based processing and storage of 

metabolomic data with XCMS Online offers 
several distinct advantages for analyzing 
metabolomic results. It reduces the need for 
on-site hardware and software resources, 
for example, and is also easily scalable with 
computational demands3. Indeed, it is now 
possible to analyze terabytes of data with 
XCMS Online (Supplementary Fig. 1). 
Uploading data to XCMS Online requires 
minimal technical expertise. First-time 
users can simply chose an appropriate 
default parameter set for their instrument, 
whereas advanced users can modify existing 
parameter sets. Therefore, XCMS Online 
is a robust platform for nonexperts and 
experts to perform metabolomic data 
processing. Despite the advantages of cloud-
based data processing, however, a major 
challenge has been the time required to 
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at different geographical locations, we 
performed a metabolomic experiment at 
Washington University in St. Louis. We 
installed a script (Supplementary Software 1) 
 on the computer workstation of an Agilent 
(Santa Clara, CA) quadrupole time-of-flight 
mass spectrometer (QTOF-MS, 6520) at 
Washington University. The script detects 
the end of an LC-MS run and initiates the 
subsequent transfer of the data along with any 
metadata about the instrument parameters, 
sample type, etc. to the XCMS Online server. 
When setting up the streaming, users are 
presented with options to automatically tag 
samples based on origin source to facilitate 
archiving and retrieving of data as well as 
defining sample groups. Heightened security 
is achieved by encryption, and file checksums 
are compared upon completion of transfer 
to reduce the risk of file corruption. These 
scripts are available to all XCMS Online 
users via the website (https://xcmsonline.
scripps.edu/nbt); each script will have slight 
modifications depending on the type of mass 
spectrometer.

As described above, in untargeted 
metabolomics, users typically acquire 
profiling data first. After the data are 
uploaded to XCMS Online and processed, 
an XCMS user can inspect the results and 
select for additional analysis, metabolomic 
features that have statistical values above a 
defined threshold (e.g., P ≤ 0.01 and fold 
change > 2) as well as METLIN database 
hits. These features are then re-analyzed 
and MS2 data are acquired to structurally 
support putative database assignments. As 
an alternative to this type of targeted MS2 
approach, it has been suggested that MS2 data 
for structural identification are acquired for 
every feature at the same time that MS1 data 
are acquired for profiling4. This untargeted 
workflow has been referred to as autonomous 
metabolomics and allows for the immediate 
generation of MS2 data, thereby reducing 
data-analysis time. The recent development 
of mass spectrometers with increasing MS2 
acquisition speeds has made the possibility 
of acquiring MS2 data for every metabolomic 
feature more practical; however, the data 
quality of the MS2 spectra obtained at such 
speeds can still be problematic5. Notably, 
many MS2 spectra end up being acquired 
for compounds that are not of interest to the 
investigator at the expense of decreased data 
quality for the compounds of interest.

The introduction of data streaming offers 
an improvement upon the autonomous 
metabolomic workflow. Instead of acquiring 
MS2 data for every metabolomic feature, we 
suggest that investigators acquire MS2 data 

file size of ~14.0 GB for high-resolution 
data. The upload time using a non–local area 
network (LAN) connection (Fig. 1) ranged 
from 15 h to 72 h, but on average was 20 h,  
depending on the user’s local available 
speeds. On the basis of each job’s specific 
LC-MS run time (including column washes 
when designated) and average internet 
connection speed, we determined that by 
using a streaming approach most of the data 
upload could occur in parallel with LC-MS 
data acquisition and be completed before the 
last LC-MS sample is analyzed. Specifically, 
for these 1,000 jobs, we determined that 
streaming would reduce the mean wait time 
after the last LC-MS run to complete data 
processing from 20 h to fewer than 3 h, a 
reduction of sevenfold.

In the current version of the streaming 
script, file compression is unnecessary as the 
average data transfer time was less than the 
time required to complete a single LC-MS 
run. However, a data compression option 
is also available to further reduce the data 
upload time for faster LC-MS experiments, 
such as ultra performance liquid 
chromatography (UPLC). As an example, 
the average time required for uploading 
data from an 82-min run (60-min run plus 
wash and re-equilibration), was 57 min. The 
total time saving would be the number of 
runs multiplied by the average upload time 
per run. When analyzing large data sets, the 
proposed streaming approach could reduce 
the upload time of a terabyte of data by three 
orders of magnitude (Supplementary Figs. 1  
and 2).

As a real example to demonstrate the 
efficacy of streaming in laboratories 

upload metabolomic data files to the XCMS 
Online server. Depending on file sizes and 
internet connection speed, data upload can 
sometimes take more than a day. Given the 
cumulative time required to acquire the 
profiling data, upload the files, inspect the 
results manually and then re-run the samples 
for targeted tandem mass spectrometry 
(MS2) analysis, it can take up to a week to 
complete the entire untargeted metabolomic 
workflow.

Here we describe a solution to the time 
demands of metabolomic data upload to 
XCMS Online. In brief, we designed XCMS 
Online software that enables uploading of 
metabolomic data files from the instrument 
computer workstation as they are acquired. 
Although upload speed is still a function 
of data size and internet connection speed, 
this software introduces improved efficiency 
to the untargeted metabolomic workflow. 
That is, much of the data upload time occurs 
in parallel to the data acquisition. If each 
liquid chromatography–mass spectrometry 
(LC-MS) run is considered as a discrete data 
packet, the process of uploading these results 
while simultaneously acquiring data for the 
next sample can be considered as a type of 
data ‘streaming’.

To illustrate the time demands of 
uploading metabolomic data, we analyzed 
1,000 jobs processed by XCMS Online over  
2 months by hundreds of unique users. (Note: 
we accessed data only from users who gave 
permission to perform such comparisons at 
the time of their XCMS Online registration.) 
From these 1,000 jobs, we found that the 
number of samples processed by each user 
ranged from four to 3,000, with a mean  
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Figure 1  Time saved by metabolomic data streaming. XCMS-based data streaming workflow (top left) 
allows data upload and processing after each LC-MS run is performed, dramatically reducing the 
processing time after the data are acquired for the final sample (top right). A thousand XCMS Online 
data sets were examined for their average processing time without streaming. For low-resolution data 
(~1.4 GB) and high-resolution data (~14.0 GB) over 10 h and 20 h was required after the final LC-MS 
analysis was performed, respectively. Streaming allowed a sevenfold decrease in average processing 
time after data acquisition.
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target for subsequent analysis and enabled 
assessment of its role in cancer. In a similar 
streaming analysis applied to bacterial 
samples chemically stressed, we found 
glutamate metabolism to be dysregulated 
(Supplementary Fig. 3). Although we only 
demonstrated our approach by using Agilent 
instrumentation, data streaming and biology-
dependent data acquisition can be performed 
on instruments from any vendor (Agilent 
(Santa Clara, CA), AB SCIEX (Framingham, 
MA), Thermo Fisher Scientific (Waltham, 
MA), Bruker (Billerica, MA) and Waters 
(Manchester, UK)) (Supplementary Fig. 4). 
Also, although our biology-dependent MS2 
acquisition is designed to generate data on 
peaks of relevance to the investigator, some 
interesting metabolites may be missed, and 
therefore coupling this platform with standard 
full data analysis may provide additional 
insights.

In summary, cloud-based processing of 
metabolomic data offers many benefits but is 
largely limited by the speed of data transfer 
over the internet, a problem reminiscent of 
online media communications. However, 
the application of mass spectrometry data 
streaming will facilitate web-based processing 
of metabolomic results and additionally 
offer the possibility of biology-dependent 
data acquisition. Here we demonstrated 
the benefits of data streaming for mass 
spectrometry–based metabolomics. We 

To augment biology-dependent data 
acquisition, we wrote a script that enables 
automated metabolic pathway analysis 
(Supplementary Software 2). This script 
finds putatively identified metabolites (based 
on accurate mass) in the same metabolic 
pathway as those that are dysregulated and 
then prioritizes these ions for MS2 analysis. 
In short, metabolite identifiers (name, 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) or Chemical Abstracts Service 
(CAS)) are transmitted via Simple Object 
Access Protocol (SOAP) or Representational 
State Transfer (REST) Internet query 
methods to the three following metabolic 
pathway databases concurrently: Reactome 
(http://www.reactome.org/)9, The Small 
Molecule Pathway Database (http://www.
smpdb.ca/)10 and IMPaLA: Integrated 
Molecular Pathway Level Analysis (http://
impala.molgen.mpg.de/)11. When two or 
more putatively assigned metabolites are 
found to be in the same pathway, the MS1 
data are then searched for the accurate 
masses of each metabolite in that pathway, 
and putative matches are then targeted 
for MS2 analysis (even if they are not 
dysregulated).

In the data shown here, IMPaLA identified 
four metabolites belonging to the same 
pathway “urea cycle and metabolism of 
arginine, proline, glutamate, aspartate, and 
asparagine.” As a result, this pathway was a 

only for the features of interest based on 
predefined statistical thresholds and whether 
or not the compounds have accurate mass 
matches in the METLIN metabolite database. 
Although this is conceptually similar to data-
dependent MS2 acquisition, a workflow that 
has been used in proteomics6, this biology-
dependent data acquisition is unique in 
that MS2 is not triggered on the basis of ion 
intensity. Rather, MS2 is triggered based on 
the previously acquired and processed files 
that have already been uploaded and  
analyzed by XCMS Online. The data 
processing involved with automated 
selection of ions targeted for MS2 analysis 
is analogous to that which has already been 
described7, but here ion selection and MS2 
acquisition will occur within the same 
set of experimental runs. In this context, 
XCMS-based streaming allows for biology-
dependent data acquisition.

To demonstrate XCMS Online–based 
streaming and the utility of biology-
dependent data acquisition, we performed 
experiments on tumor samples and normal 
tissues using our existing XCMS Online 
platform (Fig. 2 and Supplementary Fig. 3).  
For this comparison, we prepared 28 
normal and tumor samples for LC-MS 
analysis. In brief, metabolites from 10 
mg of tissue were isolated as described 
previously by using an acetone and methanol 
extraction, and analyzed by an Agilent 
QTOF instrument8. The experiment was 
carried out by using the script mentioned 
above, which communicated with the 
application programming interface of the 
mass spectrometry software. For biology-
dependent data acquisition, instead of 
processing the data after the final sample 
upload as shown in Figure 1, the data 
were uploaded to XCMS Online after each 
LC-MS run and reprocessed (using a paired 
Wilcoxon signed-rank test) to identify ions 
with a mass-to-charge ratio (m/z) of the most 
statistically meaningful biology-dependent 
candidates. The statistical analysis started 
when the number of samples uploaded per 
group was equal to three, and the univariate 
analysis was performed consecutively after 
each sample was acquired. The thresholds 
for ions selected by biology-dependent data 
acquisition were set at P ≤ 0.001, fold change 
≥ 1.5 and intensity > 10,000 ion counts. Those 
ions that had accurate mass matches (<15 
p.p.m.) to the METLIN metabolite database 
were designated for MS2 analysis. As data 
streaming progresses, the P value of the ion 
shown to be dysregulated between normal 
and tumor tissues decreases (Fig. 2), and MS2 
is triggered to allow for identification.

Biology-dependent
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Sequential 
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Streaming LC-MS data

Target

metabolites

P value

0.0001
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MS-MS

trigger
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Figure 2  Biology-dependent data acquisition from tumor samples. Instead of using data-driven 
acquisition of MS2 data that relies on intensity, signal-to-noise ratio (S/N) or prior acquisition of precursor 
ions, biology-dependent data acquisition relies on statistics generated after each sample run for mass 
spectrometry data acquisition decision making. The representative example, generated from cancer tumor 
samples, shows a decreasing P value for a feature of interest over the time-course of data streaming. 
When the P value for the features reaches 0.001, MS2 is performed. A two-tailed Wilcoxon signed-rank 
test was used to calculate the statistical significance for n = 28. Box and whisker plots display the full 
range of variation (whiskers, median with minimum–maximum; boxes, interquartile range).
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expect that this concept could be extended 
to any experimental analysis requiring data 
upload and real-time feedback from cloud-
based processing.

Note: Supplementary information is available in the 
online version of the paper (doi:10.1038/nbt.2927)
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