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ABSTRACT: An autonomous metabolomic workflow com-
bining mass spectrometry analysis with tandem mass
spectrometry data acquisition was designed to allow for
simultaneous data processing and metabolite characterization.
Although previously tandem mass spectrometry data have
been generated on the fly, the experiments described herein
combine this technology with the bioinformatic resources of
XCMS and METLIN. As a result of this unique integration, we
can analyze large profiling datasets and simultaneously obtain
structural identifications. Validation of the workflow on
bacterial samples allowed the profiling on the order of a
thousand metabolite features with simultaneous tandem mass
spectra data acquisition. The tandem mass spectrometry data
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acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the
current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means
of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification,

and data analysis at a systems biology level.

Untargeted metabolomic experiments performed on
complex biological matrices with high-resolution, high-
throughput, and sensitive mass spectrometry (MS) technology
have enabled the detection of thousands of metabolite features
from a single experiment.l_4 However, the identification of
these features presents a major bottleneck in the metabolomics
workflow. It is not only a time-consuming process, taking weeks
to carry out, but often results in a low yield of correctly
identified metabolites. This is partly due to the manual
interpretation required by the investigator and also the number
of metabolites currently characterized in metabolite databases.®
This process can be potentially shortened by integrating
metabolite profiling and identification into a single autonomous
workflow.

Current metabolomic studies typically adopt a multistep
workflow (Figure 1). Comparative profiling is first carried out
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in MS mode; the data is then processed using bioinformatics
software such as XCMS®’ to reveal features of interest that
show statistically significant differences. The features are then
subjected to tandem mass spectrometry (MS/MS) acquisition
and identified through MS/MS matching to standards in
metabolite databases such as METLIN.*® This conventional
approach typically involves the generation of a list of
dysregulated metabolite features from an initial set of
experiments followed by statistical analysis and manual
selection of precursor ions, which are then fragmented to

obtain mass spectra used for metabolite characterization.'®
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Figure 1. An autonomous vs conventional mass spectrometry-based metabolomic workflow. The autonomous workflow is based on parallel
untargeted MS' and MS? data acquisition, where cycle time is optimized as a compromise for high peak definition (MS' for comparative quantitative
analysis) and high quality MS? (for MS/MS matching to facilitate metabolite identification). The conventional workflow, the untargeted MS' data
acquisition for comparative quantitative analysis and targeted MS> data acquisition of dysregulated features of interest (for metabolite identification)
are performed in two subsequent steps. The autonomous workflow can be accomplished through the direct link between XCMS software and

METLIN metabolite database.

Similar to the early days of proteomics, this time-consuming
metabolomic workflow relies heavily on investigator input and
manual data analysis.

To facilitate a more efficient and autonomous approach
toward ‘omic scale profiling, we have been developing XCMS
Online, a software package for untargeted metabolomics to
enable the integration of metabolite profiling and identification
into one step (Figure 1). XCMS Online has integrated
algorithms for peak detection, retention time correction,
chromatogram alignment, and relative quantification based on
peak area. In addition, a number of univariate and multivariate
statistical tools have been incorporated into the workflow to aid
in elucidating the features that have the highest statistical
significance and drive sample clustering.'’ However, one of the
most important aspects of XCMS Online is its integrated
metabolite database, METLIN, a spectral library with MS/MS
data available for more than ten thousand endogenous and
exogenous metabolites, enabling automatic putative identifica-
tion of metabolites.

The basis of the autonomous metabolomic workflow is high
resolution sequential MS and MS/MS data acquisition (Figure
1). High-quality MS and MS/MS data are a prerequisite to
extract accurate quantitative information and simultaneously
characterize metabolite features by MS/MS data matching.'*
This one-step autonomous approach requires coordinated
acquisition of MS and MS/MS data to ensure efficient and
accurate comparative analysis and identification. Mass spec-
trometers that have high scan speeds and can alternate between
MS and MS/MS modes in the same run are essential for this
type of simultaneous data acquisition. Indeed, most modern

quadrupole-time-of-flight (Q-TOF) instruments have high
sensitivity and rapid scan speeds ensuring the acquisition of a
sufficient amount of data points across a chromatographic peak
while simultaneously acquiring fragmentation data which is
necessary for metabolite characterization.

Key to the autonomous approach has been the development,
over the last ten years, of databases to facilitate identification of
metabolites in metabolomic experiments. The METLIN
tandem mass spectrometry database,">'* Human Metabolome
Database (HMDB),"® MassBank,"® and LipidMaps'” databases
have been generated largely from the analysis of pure standard
compounds to provide for accurate identification of metabolites
from biological samples. Most of these repositories allow
researchers to compare MS/MS data from their research
samples to MS/MS data recorded from standards one at a time
for metabolite identification.

Here, we have designed an autonomous untargeted
metabolomic workflow that acquires MS and MS/MS data
sequentially. Quantitative information is extracted from MS
data using XCMS Online and metabolite features are
simultaneously characterized by matching MS/MS data to the
METLIN database. The effectiveness of this workflow is
demonstrated using standard mixture and a bacterial extract
samples.

B EXPERIMENTAL SECTION

Chemicals. Ammonium acetate (NH,Ac) and ammonium
hydroxide (NH,OH) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). LC-MS grade methanol (MeOH) was
purchased from Honeywell (Muskegon, MI, USA). LC-MS
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grade acetonitrile was purchased from Fisher Scientific (Morris
Plains, NJ, USA) and water was purchased from J.T. Baker
(Phillipsburg, NJ, USA).

Bacterial Strain and Biofilm Growth Conditions.
Desulfovibrio vulgaris Hildenborough (DvH) was obtained
from Dr. Romy Chakraborty (Lawrence Berkeley National
Lab). DvH was grown in LS4D medium, which contains lactate
as the carbon source and electron donor and sulfate as the
electron acceptor'® (modified to 2.5 uM resazurin and 130 uM
riboflavin in modified Thauer’s vitamins stock).'” Lactate and
sulfate concentrations were altered to create balanced and
electron acceptor limited conditions. The balanced condition
was defined as 60 mM sodium lactate and 30 mM sodium
sulfate and the electron acceptor limited condition was defined
as 50 mM sodium lactate and 10 mM sodium sulfate. DvH was
grown as a biofilm under continuous flow conditions in a
modified CDC reactor. Exponential phase cells were inoculated
into a reactor containing balanced or electron acceptor limited
LS4D medium and were grown in batch mode for 48 h.
Reactors were grown at room temperature (20—23 °C), with a
dilution rate of 0.04™™, stirred at 60 rpm, and the headspace
was continually sparged with sterile N, gas to maintain
anaerobic conditions. Coupons of aclar (7.8 mil thickness)
(Electron Microscopy Sciences, Hatfield, PA) supported by
glass slides were submerged in the reactor body as a surface for
biofilm growth. Aclar coupons were removed from the reactor
at 144 h, rinsed three times in ice-cold phosphate buffered
saline, wicked dry, and flash frozen in liquid nitrogen. Samples
were stored at —70 °C until further analysis.

Growth of Credentialed Escherichia coli Standards.
Escherichia coli cultures were grown in a rotary shaker at 37 °C.
A preculture of K12 MG165S strain was grown in LB broth for
16 h. M9 minimal salts were prepared and 100 mL aliquoted
into 2 sterile 1 L Erlenmeyer flasks. To each aliquot 2 mL of
200 mg/mL glucose was added via fresh filtered syringe. One
aliquot received U'3C-labeled glucose and the second received
natural abundance glucose. Each aliquot was then inoculated
with the equivalent of 1 mL of OD600 = 0.6 preculture as
determined by dilution. Cultures were grown to OD600 = 1.0
at which point they were harvested. Cell quench solution of 10
mM ammonium acetate in 3:2 methanol/water was aliquoted
into 50 conical tubes, 30 mL per tube. Tubes were chilled to
—60 °C using a dry ice and 60% ethylene glycol in ethanol bath.
Upon reaching OD600 = 1.0 flasks were removed from the
shaker and rapidly aliquoted into the prechilled tubes. Pairs of
tubes were prepared, with one being mixed at 8:11 and the
other 11:8 ">C culture to *C culture, respectively. Cells were
pelleted by centrifugation at 0 °C and 3200 RCF for 15 min.

Metabolite Extraction. Bacteria biofilm and cell pellets
(DVH and E. coli) were extracted using a MeOH/ACN/H,0O
(2:2:1, v/v) solvent mixture. A volume of 1 mL of cold solvent
was added to each pellet, vortexed for 30 s and incubated in
liquid nitrogen for 1 min. Samples were allowed to thaw and
sonicated for 10 min. This cycle of cell lysis in liquid nitrogen
combined with sonication was repeated three times. To
precipitate proteins, the samples were incubated for 1 h at
—20 °C, followed by 15 min centrifugation at 13,000 rpm and 4
°C. The resulting supernatant was removed and evaporated to
dryness in a vacuum concentrator. The dry extracts were then
reconstituted in 100 uL of ACN:H,O (1:1, v/v), sonicated for
10 min and centrifuged for 15 min at 13000 rpm and 4 °C to
remove insoluble debris. The supernatants were transferred to
HPLC vials and stored at —80 °C prior to LC/MS analysis.

LC/MS/MS Analysis. Analyses were performed using an
HPLC system (1200 series, Agilent Technologies) coupled to a
quadrupole time-of-flight (AB Sciex TripleTOF 5600, and
Agilent Q-TOF 6530). Samples were analyzed using a
Phenomenex (Torrance, CA, USA) Luna Aminopropyl column
for HILIC-MS analysis.”® The mobile phase A = 20 mM
NH,Ac and 20 mM NH,OH in 95% water and B = 95%
acetonitrile was used. A linear gradient elution from 100% B
(0—5 min) to 100% A (45—50 min) was used. The 10 min
postrun was applied to ensure column re-equilibration and
maintain the reproducibility. The total gradient time was 60
min. The flow rate was 50 pL/min and the sample injection
volume was 5 uL. DVH biofilm samples and standard mixture
were analyzed using AB Sciex TripleTOF 5600 instrument
whereas credentialed E. coli standards were analyzed using
Agilent Q-TOF 6530.

ESI source conditions on TripleTOF were set as following:
Ion Source Gas 1 (GS1) as 35, Ion Source Gas 2 (GS2) as 35,
Curtain gas (CUR) as 30, source temperature S50 °C, IonSpray
Voltage Floating (ISVF) —4500 V in negative mode. In MS
only acquisition, the instrument was set to acquire over the m/z
range 50—1000 Da with TOF MS scan, and the accumulation
time for TOF MS scan was set at 0.25 s/spectra. In auto MS/
MS acquisition, the instrument was set to acquire over the m/z
range 50—1000 Da for TOF MS scan and the m/z range 25—
1000 for product ion scan. The accumulation time for TOF MS
scan was set at 0.25 s/spectra and product ion scan at 0.05 s/
spectra (cycle time = 1 sec). The product ion scan is acquired
using information dependent acquisition (IDA) with high
sensitivity mode selected. IDA triggers MS/MS during the full
scan experiment based on a set of criteria that the user inputs.
The unit resolution is selected for precursor ion selection, and
the collision energy (CE) was fixed at —30 V with +15 spread.
Declustering potential (DP) was set as —100 V. IDA settings
were set as following: charge state 1 to 1, intensity 500 cps,
exclude isotopes within 4 Da, mass tolerance 10 ppm and
maximum number of candidate ions 15. The “exclude former
target ions” was set as 9 s after 2 occurrences. In IDA Advanced
tab, “dynamic background subtract” was also chosen.

ESI source settings on Agilent 6530 instrument were as
follows: gas temp, 250 °C; gas flow, 6 L/min; nebulizer
pressure, 25 psi; sheath flow, 9 L/min; sheath temperature, 350
°C; fragmentor, 120 V; capillary, 2000 V; nozzle, 1500 V. All
MS and MS/MS acquisition settings were as listed above for
TripleTOF.

Data Processing of DVH Biofilm Samples. The raw MS
data (wiff:scan files) were converted to mzXML files using
ProteoWizard MSConvert and processed using XCMS for
feature detection, retention time correction and alignment. The
parameters in XCMS were set as follows: centWave settings for
feature detection (A m/z = 1S ppm, minimum peak width = 10
s and maximum peak width = 120 s) and mzwid = 0.01S,
minfrac = 0.5, and bw = S for chromatogram alignment. After
careful evaluation retention time alignment was shown not to
be required. Isotopic peaks and adducts were detected using
CAMERA.*' Paramater ID was 12480 and the data sets are
shared as public data sets ID: 1039270 (Auto MS/MS job) and
1039276 (MS Only job). Each mzXML file was processed
separately to ensure features were not missed. For each file a
global noise intensity level was calculated using the XCMS
noise function on each scan. The median from the distribution
was used as a filter to remove peak below this value in each
spectrum. The precursor was then matched to METLIN at 20
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ppm accuracy. The database currently contains MS/MS data
for more than 12 000 metabolites and 61 000 MS/MS spectra.
Matches with MS/MS data were scored using a cosine
similarity metric (0—1) to the closest collision energy in the
database. Spectral mirror plots were created for conformation
of positive matches.

Data Processing of Credentialed E. coli Standards. A
pair of E. coli samples (8:11 and 11:8) were analyzed as above
in both MS1 only mode and auto MS/MS mode. These
samples were credentialed using the github pattilab/credential
R package (http://pattilab.wustl.edu/software/credential/).
Parameters used were mixed ratio factor = 4, mixed ratio_1-
atio_factor = 1.8, mpc_factor = 1.1. The list of credentialed
features was then formatted as a preferred MS/MS list and the
samples were analyzed again in Preferred Auto MS/MS mode.

B RESULTS AND DISCUSSION

Autonomous Workflow Optimization: Auto MS/MS
method. The overall design of the autonomous workflow
approach is to simultaneously acquire MS and MS/MS data
during each LC/MS run (Figure 1). The quality of both MS
and MS/MS data were of equal importance and a balance
between the amounts of time spent on the acquisition of each
needed to be made. While MS/MS data were necessary to
generate fragmentation patterns for metabolite identification,
too long accumulation times to maximize signal-to-noise and
collect high quality MS/MS data can compromise MS data
quality. MS data acquisition is crucial for metabolite feature
detection, profile alignment, comparative and statistical
analyses; however excessive time acquiring MS data could
limit the number of MS/MS spectra and weaken MS/MS
spectral quality. Fortunately, modern Q-TOF mass spectrom-
eters have fast scan rates and high sensitivities making it
possible to collect both MS and MS/MS data simultaneously,
throughout the same run, without compromising overall data
quality.

In this study, biological samples were extracted and analyzed
on a Q-TOF mass spectrometer coupled to a capillary LC. The
MS/MS spectra were generated using automated Information
Dependent Acquisition (IDA), whereby the instrument
software continuously evaluates the profile of the precursor
ions (MS data) in the full survey scan and triggers MS/MS
acquisition based on a set of criteria that the user inputs into
the method. Instrument settings including acquisition rate,
number of precursor candidate ions, collision energy, and
dynamic exclusion time were optimized for IDA. In the
optimized Auto MS/MS method, MS/MS acquisition was
triggered on selected precursor ions that met the defined
criteria of intensity and charge state. A cycle time of 1 s was
used for data acquisition where each MS scan was followed by
1S MS/MS events. MS data were acquired at 4 Hz (250 ms
accumulation time for each spectrum) while MS/MS data were
acquired at 20 Hz (50 ms accumulation time for each spectrum,
and 750 ms in total for 15 MS/MS events). This ensured an
approximate duty cycle of 25% on MS acquisition while
simultaneously acquiring up to 15 MS/MS spectra in the
remaining time period. Chromatographic base peak widths for
ions in HILIC HPLC mode were 30 s on average. A cycle time
of 1 s ensured at least 15—30 MS data points acquired for each
extracted ion chromatogram (EIC) peak. Multiple MS data
points along the chromatographic peak are crucial for reliable
peak detection, peak area integration, comparative and
statistical analyses. The accumulation time for both MS and

MS/MS acquisitions by UHPLC separation can be reduced 3
to S times as features tend to be 3 to S times narrower when
compared to capillary LC separation. However, shortening the
accumulation time compromises the sensitivity and data quality.

Some of the crucial parameters for precursor ion selection in
IDA mode included a precursor ion intensity threshold of 500
counts, monoisotopic precursor selection and charge state
screening to exclude any feature that was not singly charged
(see Methods). Dynamic exclusion in IDA mode has been
enabled to further reduce the redundancy of precursor ion
selection and expand the MS/MS acquisition coverage. Every
precursor jon that qualified using the preset criteria, was
selected for fragmentation two consecutive times, and was
dynamically excluded for the next nine seconds. Repeated
acquisition on the same precursor ion and short exclusion times
were chosen to maintain sufficient redundancy for MS/MS data
acquisition providing higher quality data.

Validation of Autonomous Workflow: Auto MS/MS
versus MS Only. To test the efficacy of our autonomous
workflow a complex biological matrix from bacterial biofilm
culture was investigated. Desulfovibrio vulgaris Hildenborough
(DvH) biofilm samples were grown in balanced (BAL, n = 4)
and in electron acceptor limited conditions (EAL, n = 4) to
obtain insight into the altered metabolic activity and under-
stand how it could be associated with a particular phenotype.
The metabolic response of DVH biofilms grown in EAL
conditions versus balanced conditions were characterized and
compared using the optimized MS sampling rate and duty cycle
as described above. Analysis was carried out in both MS Only
mode (i.e., only MS' acquisition) and Auto MS/MS mode (i.e.,
MS' and MS? acquisition). Out of total aligned features, thirty
six percent of the features that were observed using MS only
method were also observed using the auto MS/MS method
(Figure 2A). Forty nine percent of additional unique features
detected by MS only method were likely due to frequent MS'
data acquisition, and therefore higher MS! signal intensity and
peak definition. Furthermore, 29% of the dysregulated features
(p-value < 0.0, intensity > 1000) detected with the MS only
method were also observed using the Auto MS/MS acquisition
(Figure 2A). The other 28% were related to chemical noise and
false positives or negatives, likely because of lower peak
definition quality. Fold-change is an important parameter to
characterize the degree of metabolite change in perturbed
biological system. An example of one down-regulated
metabolite feature characterized by m/z 132.030 and retention
time of 24.6 min acquired with both methods was used to
demonstrate the consistency of the Auto MS/MS method
compared to the MS only method (Figure 2B). Both
acquisition methods showed similar fold change and statistical
significance (Welch t test). MS/MS data acquired using the
Auto MS/MS method allowed for identification of the selected
metabolite feature as aspartic acid. Together, these data
demonstrated that Auto MS/MS acquisition with a 25% duty
cycle for MS data collection can reduce data quality for
metabolite feature detection, although the majority of
dysregulated features from comparative analysis were correctly
assigned and identified. In general, the results from the
autonomous or conventional untargeted workflow should be
validated using targeted quantification of identified dysregu-
lated metabolites of interest.”>

Autonomous Metabolomic Analysis of Bacterial
Biofilm. Further data analysis of DVH biofilm grown in EAL
conditions and using Auto MS/MS acquisition in negative
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Figure 2. Characterization of the metabolic response of Desulfovibrio
vulgaris (DVH) biofilm grown in the electron acceptor limited (EAL)
conditions, using both auto MS/MS and MS-only acquisition method.
(A) The overlap between metabolite features acquired with auto MS/
MS method vs MS only method. Dysregulated metabolite features
were defined using following parameters: p-value < 0.05, intensity >
1000. (B) Metabolite feature characterized by m/z 132.030 and
retention time 24.6 min (MS/MS match, aspartic acid), its extracted
ion chromatograms (EICs), p-values and fold-changes when acquired
with auto MS/MS and MS only method. Red lines, biofilm grown in
EAL conditions (n = 4); black lines, biofilm grown in balanced
conditions (n = 4).

ionization mode revealed 34% of significantly dysregulated
metabolite features (339 features with p-value < 0.05, and
intensity > 1000) out of total aligned metabolite features
(Figure 3A). Sixty seven of these had MS/MS matches (20%)
to the METLIN metabolite database and 46 were identified
using matching score >0.5 (Figure 3B). Of these, 36 had
KEGG IDs which were used for biochemical pathway mapping
using KEGG small molecules database. The results of pathway
mapping suggested several perturbed pathways at the cell level,
relevant to DVH as a response to biofilm growth in EAL
conditions. The affected purine metabolism was chosen as an
example to demonstrate the effectiveness of the autonomous
workflow for identifying biologically relevant metabolites
(Figure 3C). Specifically, 6 metabolites were mapped onto
the purine metabolism pathway (Figure 3C) and all of which
were down-regulated as much as 6.5 fold (e.g.,, hypoxanthine).
Statistical information (e.g, fold-change and p-value) and
identification (MS/MS spectral match, METLIN, and KEGG
ID) can be extracted from data set (acquired in Auto MS/MS
mode) for each metabolite in the pathway to facilitate
interpretation (Figure 3B). As shown here, the development
of the autonomous metabolomic workflow offered simulta-
neous metabolite profiling and metabolite identification, further
supporting the use of metabolomics as a systems biology tool.

A false discovery rate (FDR) used in proteomics is not
feasible here for the MS/MS spectral matching as no
appropriate decoy metabolite databases can be constructed,”
therefore the results need to be further manually assessed by

the user. The relatively low match percentage (up to 20%) is
likely due to incompleteness of the METLIN database and
metabolite databases in general. However, METLIN is rapidly
expanding and the number of successful matches is likely to
improve over time. In the past 3 years METLIN has added
more than 6,000 metabolites with MS/MS data. As of
September 2014 METLIN housed more than 12000
compounds with MS/MS data. This demonstrates the
importance of having a comprehensive metabolite database
and its impact on the metabolite identification process. As more
and more fragmentation data from metabolites and their
derivatives are deposited into METLIN, we expect that our
ability to identify metabolites from biological samples will
greatly improve. The scoring algorithm can also affect the
results. Here, we have used the cosine similarity score for its
ease of implementation and interpretation. However, there are
many other scoring algorithms in use today, such as X-rank**
weighted cosine,'® and others.

Addressing the Coverage of Autonomous MS/MS
Spectra Acquisition. Additional experiments were performed
to demonstrate the effectiveness of the autonomous workflow
for metabolite identification through METLIN tandem mass
spectral matches. In addition to the limitation presented by the
incomplete database two major factors limit the number of
matched features; MS/MS spectral coverage and the match
percentage. To determine the coverage of the autonomous
metabolomic approach, we measured a standard metabolite
mixture (40 metabolites, Supporting Information Table 1) by
optimized Auto MS/MS method, and the results revealed that
MS/MS spectra were acquired for 85% of the metabolites
present in the standard mixture. All of these metabolites could
be identified through MS/MS matching against METLIN
metabolite database. The future improvements in instrument
scan speed as new instruments are developed will likely increase
this already high MS/MS spectral coverage. However,
increasing the scan speed comes at the detriment of acquiring
good quality MS/MS spectra, therefore, in our case; a 20 Hz
acquisition rate was employed as a compromise to achieve
higher numbers of metabolite identifications (Figure 4).

To maximize scan time, and therefore maximize MS/MS
spectral quality, we opted to narrow down the number of
candidate features via “credentialing” or defining the real,
biologically relevant nonartifactual features. In an autonomous
metabolomic experiment, the objective is to acquire MS/MS
data for all monoisotopic ions of biological origin. Out of the
thousands of ions that are typically detected in an untargeted
metabolomic experiment only a small percentage of these will
be relevant, biological ions. Selecting the appropriate ions for
MS/MS analysis, thus, is a challenge. As demonstrated herein,
modern instruments are capable of intelligently excluding
isotopes, charge states, and low abundance ions from MS/MS
analysis. Still, using auto MS/MS, many ions will be analyzed
which are irrelevant to the experiment. This is due to many
monoisotopic, high abundance ions which are the result of
contamination and chemical noise rather than the biological
sample. These peaks waste scans, taking time away from true,
relevant metabolites and effectively decreasing MS/MS cover-
age. To investigate and address the challenge of coverage in
auto MS/MS experiments we utilized a credentialing approach.
In this approach we performed auto MS/MS on an extract of E.
coli specifically prepared for the credentialing informatic
workflow. This workflow allows the distinction of biological
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Figure 3. Autonomous metabolomic approach for simultaneous comparative analysis and identification of metabolites. (A) XCMS Cloud plot
representation of the dysregulated metabolite features from Desulfovibrio vulgaris biofilm grown in electron acceptor limited conditions: red bubbles
represent up-regulated features and blue bubbles represent down-regulated features. (B) Relative quantification and MS/MS matching identification
of hypoxanthine as intermediary metabolite in purine metabolism. (C) Pathway mapping of dysregulated metabolite features using KEGG. Identified
metabolites and their role in the purine metabolism pathway: blue circles represent down-regulated metabolites and the size of the circle represents

the fold change.

features and artifactual features (such as contamination and
chemical noise).*®

Using this information, we assess the coverage of Auto MS/
MS and whether this coverage can be improved with guided
precursor ion selection (preferred auto MS/MS). As shown in
Figure S, after deisotoping and credentialing, the 12 420 total
original features decreased to 836 credentialed features. The
removed artifactual features correspond to various noise
sources, contamination, and isotopes. The remaining 836
credentialed features represent the biologically relevant signals
of which MS/MS data is desired.

The initial experiment resulted in 2606 features being chosen
during auto MS/MS mode, from the 12420 total features, of
these, 2288 (88%) were artifactual. After credentialing, only
836 features were detected compared to 12420, and out of
these 836, only 38% (318 features) were picked up by the
original auto MS/MS experiment without credentialing. This
low coverage of credentialed features, and the high number of

noncredentialed features assayed, illustrates the challenge of
prioritizing relevant ions for analysis.

To improve the coverage of relevant ions we applied a
preferred ion list to guide MS/MS precursor selection. The 836
credentialed features were imported as a preferred ion list and
the auto MS/MS experiment repeated. After addition of the
preferred ion list 660 credentialed features were analyzed by
MS/MS corresponding to a 207% increase. This represents 342
new credentialed features which were analyzed by MS/MS and
a large increase in coverage of our method. The use of a
credentialed, preferred auto MS/MS list is a valuable addition
to the autonomous metabolomic workflow for any sample type.
Biological ions from a standard E. coli extract are easily
annotated using the feature credentialing workflow.”® These
credentialed features are then used to generate a preferred ion
list and included in the autonomous method. While this
preferred list was generated using E. colj, it is applicable to any
biological sample. Preferred ions are only analyzed if they are
present at the proper retention time, so extraneous ions in the
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Figure 4. MS/MS spectral matching of the MS/MS data, acquired “on-the-fly”, against METLIN metabolite database. MS/MS data were acquired at
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Figure 5. Preferred auto MS/MS increased MS/MS coverage of
credentialed features relative to a naive experiment. Credentialed or
biologically relevant features comprise only a portion of a metabolomic
data set. The utilization of credentialed features to generate a preferred
ion list increased auto MS/MS coverage to 78% of credentialed
features.

list will not detract from the analysis. Further, the shared
metabolite content of various biological samples ensures that
many metabolites (central carbon metabolism, amino acids,
etc.) are preferentially analyzed over artifactual peaks.

B CONCLUSIONS

An autonomous workflow that allows for simultaneous MS and
MS/MS data acquisition will enable relative quantification and
structural characterization for the thousands of features
observed using untargeted metabolomics. High quality data
acquisition can be accomplished by taking advantage of the
high sensitivity, high mass accuracy and resolution, and fast
scanning speeds of modern mass spectrometers. Key to this
workflow is utilizing the well-established XCMS bioinformatic
platform and the largest metabolite database METLIN that

facilitates feature assignment and identification. Our results
revealed that Integrated MS and MS/MS data acquisition in the
autonomous approach significantly improved the throughput
performance, reducing the amount of sample and time required
for the metabolomic experiments. An autonomous metabolo-
mic approach will thus ultimately allow the more rapid
integration of comparative analyses, metabolite identification,
and data analysis at a systems biology level.
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