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Bioinformatic tools are required to carry out essential
functions such as statistical analyses and database

functionalities. Now, they are also needed for one of the most
difficult tasks, helping researchers decide which metabolites are
the most biologically meaningful. This can be achieved through
aiding the identification process, reducing feature redundancy,
putting forward better candidates for tandem mass spectrometry
(MS/MS), speeding up or automating the workflow, deconvolv-
ing the feature list through meta-analysis or multigroup analysis,
or using stable isotopes and pathway mapping. This review thus
focuses on the most recent and innovative bioinformatic
advancements for identifying metabolites.
A primary objective of metabolomics beyond biomarker

discovery is to identify the most meaningful metabolites that
correlate with disease pathogenesis or other perturbations of
metabolism. Metabolites play important roles in biological
pathways; their flux or differential regulation (dysregulation)
can reveal novel insights into disease and environmental
influences. Therefore, one of the most important goals of
metabolomic analysis has been to assign metabolite identity so
they can be used for further statistical and informed pathway
analysis.1,2 Over the past few years, technologies for analyzing
metabolites by untargeted or targeted metabolomics have
undergone extensive improvements. Strides to establish the
most efficient protocols for experimental design, sample extrac-
tion techniques, and data acquisition have paid off providing
robust complex data sets.3−9 As more is being required of these

data sets such as assigning identity and biological meaning to
the features, bioinformatics is the area of metabolomics which is
currently undergoing the most needed growth.
It is often the case that metabolomic analysis results in a list

of metabolites with low specificity for the disease or stimulus
being studied (Figure 1). Some of these metabolites seem to be

dysregulated in a variety of diseases such as acylcarnitines10−13

and fatty acids.14−17 They may be more indicative of a
perturbed systemic cause (appetite, physical activity, diurnal
rhythm changes, etc..), sample contamination, or instrumental/
bioinformatic noise, rather than a specific biomarker of disease.
An example of this can be seen in the analysis of urinary
biomarkers of ionizing radiation, where dicarboxylic acids were
downregulated in the rat after radiation exposure. It was proven
that this observation was actually caused by a decreased
appetite after radiation exposure perturbing the β-oxidation
pathway and not from radiation-induced cellular changes.18,19

Furthermore, dicarboxylic acids can leach out from plastics
during the extraction process, further adding to the ambiguity
of their role in ionizing radiation.20

As well as identifying the correct source of the biomarkers, it
is also important to identify their physiological role and how to
utilize them as therapeutic targets. This first has to start with
the identification of the metabolite and is determined by
filtering thresholds set by the user which is intrinsically biased.
These thresholds include those for fold change and p-value,
which are highly dependent on the experiment; in vitro
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Figure 1. Biomarkers that have high vs low disease specificity.

Review

pubs.acs.org/ac

© XXXX American Chemical Society A dx.doi.org/10.1021/ac5040693 | Anal. Chem. XXXX, XXX, XXX−XXX

pubs.acs.org/ac


experiments would exhibit lower variation between biological
replicates than in vivo. The ease of identifying the metabolite is
also determined by its concentration in the sample and previous
annotation in metabolite databases. Filtering thresholds for
metabolite intensity that are set too high may omit important
biologically meaningful metabolites rather than noise. Fur-
thermore, a metabolite that is novel or not curated in a database
may not be taken into consideration based on the chemical
knowledge of the researcher and what they deem as meaningful.
In order to transform the complex list of identified

metabolites into markers of disease, or assign what role they
play, bioinformatic tools can aid in identifying the potential
pathways that the metabolite may belong to. It is then that the
researcher can use this knowledge surrounding the biology of
the metabolite to probe the mechanism of the disease.
Untargeted metabolomics has already been used in such a
manner to find the source of neuropathic pain.21 N,N-
Dimethylsphingosine was dysregulated in a rat model of
neuropathic pain, furthermore when dosed to control rats it
induced mechanical hypersensitivity. This metabolite impli-
cated the sphingomyelin-ceramide pathway as a potential
therapeutic target. Antimetabolite inhibitors of enzymes in this
pathway were tested and were able to ameliorate neuropathic
pain (unpublished data). This study holds promise for other
metabolomic studies to maximize the potential information
contained within the data for finding therapeutics of disease
rather than only providing lists of dysregulated metabolites.

■ STREAMLINING DATA ACQUISITION: THE FIRST
STEP

Data Alignment. One of the most important developments
for untargeted liquid chromatography/mass spectrometry (LC/
MS)-based metabolomics was nonlinear retention time (RT)
alignment with XCMS using endogenous metabolites.22 This
realignment for untargeted analysis is important to match peaks
representing the same analytes from different samples for
comparative analysis; these peaks naturally drift between
sample runs due to sample build up on the columns and
physical changes to the column from the mobile phase, both
which change the nature of the sample-stationary phase
interaction. An often used technique involved spiking internal
standards into samples prior to acquisition, but this was based
on the assumption that RT deviations were linear.23 Thus,
XCMS was particularly poignant as there were no options for
carrying out nonlinear realignment and untargeted LC/MS-
based untargeted metabolomics (Figure 2). Since XCMS there
have been a number of notable alignment algorithms developed
including MZmine2.24,25 New developments in columns and
LC systems have improved RT drift considerably producing
more reliable data.

Automated Metabolomics. The feature identification
process is the most time-consuming and complex part of the
metabolomic workflow. After annotation of peaks and statistical
analyses, MS/MS data need to be acquired for the feature of
interest. This data is then compared to metabolite databases
and commercial standards for definitive identification and
validation, a process that can take weeks to carry out but can be
potentially shortened through integration of metabolite
profiling and identification into a single autonomous mass
spectrometry method.
During the typical metabolomic workflow, MS1 data is

acquired for each of the samples and a feature list table is
produced displaying the results of the statistical analysis. The
investigator will search through the table and pick out the
features of interest that need to be identified, then manually
search metabolite databases for putative identification. To
confirm the identification, further mass spectrometry setup and
run time is needed for the subsequent MS/MS analysis. XCMS
Online already speeds up this process through its integration to
METLIN,26 the world’s largest metabolite database, which
enables each feature, when possible, to have putative metabolite
identification based on its mass-to-charge ratio (m/z) match. In
addition METLIN has automated MS/MS matching to help
confirm identity. RAMClust also has a semiautomated
workflow where indiscriminant MS/MS (idMS/MS) data is
used for automatic database searching.27 Both the XCMS
Online and RAMClust programs aid in the identification
process but still require informed manual interpretation.
A simple but effective way to shorten this acquisition-to-

identification process from weeks to hours is to simultaneously
acquire MS1 and MS/MS data over the duration of a LC/MS
run, using an autonomous untargeted metabolomic work-
flow26,28 (Figure 3). During this workflow MS1 data are
preprocessed by XCMS; features are extracted, realigned for
RT correction, and undergo statistical analysis. The MS/MS
data are acquired automatically using data dependent
acquisition (DDA); the MS1 data are scanned for precursor
ions selected by predefined parameters. Automatic spectral
matching of the MS/MS data to databases containing MS/MS
spectra, such as METLIN, Human Metabolome Database
(HMDB),29 and MassBank30 aid in putative identification. This
autonomous approach has been optimized to achieve the
correct balance of acquired MS1 and MS/MS data. A high scan
speed can allow for greater MS/MS spectral coverage, but a
scan speed that is too high can affect the quality of the spectra
due to the lack of data points for each extracted ion
chromatogram (EIC). In both cases adequate time is required
to obtain high-quality spectra, which is mitigated by using
quadrupole time-of-flights (QTOFs) with fast scan rates and
high sensitivity. The autonomous workflow has many benefits
for untargeted metabolomics; it saves weeks of mass spec-
trometry time as well as inspection time for manually picking

Figure 2. Nonlinear retention time alignment by XCMS allows for untargeted metabolomic analysis.
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out significant peaks. It also saves sample as repeat injections are
not needed. However, the downfall is its reliance on metabolite
databases which are not yet fully comprehensive. METLIN has
the largest number of MS/MS spectra (>12 000 metabolites with
high-resolution MS/MS data) and is growing, which will
improve the likelihood of successful matches with this workflow.
XCMS has been utilized in another semiautomated

acquisition and processing workflow along with RT prediction
to aid in metabolite identification.31 This workflow performs
feature detection, RT correction, gap filling, feature annotation,
in silico fragmentation, and spectral matching to databases.31 A
nearline (nearly online) DDA and MS/MS processing step
using MetShot (an R package) is also incorporated; MS/MS
experiments are automatically generated from a ranked list of
interesting precursor features within the same analysis, it uses
defined filters which results in the acquisition of only relevant
spectra.32 The filters include sorting and prioritizing features by
p-value or fold change, selecting features related to quasi-
molecular ions, and the removal of ions that would be too low
for MS/MS analysis. It also separates features from coeluting
and cofragmenting compounds and places them into separate
MS/MS files. To further aid in metabolite identification, the
spectra can be compared to mass spectral databases.
In silico prediction tools for fragmentation such as MetFrag

can further aid putative identification to help overcome the
incompleteness of the databases.33 More recently MetFusion
has been developed which combines MassBank, METLIN, or
the Golm Metabolome Database34 libraries with MetFrag to
improve the rank of the correct candidate.35 For each candidate
metabolite returned by MetFrag, RT prediction further limits
the number of potential candidates based on physiochemical
properties (lipophilicity) that may aid in metabolite identi-
fication.36−39 Automated workflows that incorporate data

upload, processing, identification, and pathway analyses will
thus markedly improve the efficiency of the metabolomic
workflow.

Data Streaming For Cloud-Based Metabolomics. To
overcome the challenges involved in uploading metabolomic
data files to servers, a streaming approach was developed.40

Data upload can sometimes take more than 1 day due to
limitations set by the speed of data transfer over the Internet.
The software developed allows the acquired data to be
uploaded from the instrument computer workstation directly
to XCMS Online where they are converted and processed. This
concept of data streaming reduces the mean wait time for com-
plete data processing from 20 h to fewer than 3 h (Figure 4).

The upload speed is dependent on data size and the Internet
connection, but there is a marked improvement in the
efficiency of the untargeted metabolomic workflow, as the
data upload occurs parallel to the data acquisition. In addition,
simultaneous MS/MS data are only acquired for the features of
interest based on statistical thresholds and matches to
metabolite databases from the processed files already uploaded
and analyzed by XCMS Online.

■ FEATURE ANALYSIS
Mass Spectral Annotations. In order to accurately

identify metabolites from LC/MS data, it is first essential
to elucidate which features are isotopologue ions, adduct ions
([M + Na]+, [M + Cl]−), multiply charged ions or fragment
ions ([M + H − H2O]

+). These all exist from the ionization
process.41,42 Through correct annotation, the complexity of the
data sets can be reduced and features of biological interest
identified. LC/MS data generated from untargeted metab-
olomics experiments are typically processed using freely
available bioinformatics software such as XCMS,22,43 OpenMS,44

apLCMS,45 xMSanalyzer,46 mzMatch,47 or MZmine.24 These
platforms create, in different manners, grouped feature lists
across multiple samples and classes of samples in which only a
percentage of the ions are unique; a feature is defined as a two-
dimensional bounded signal, a chromatographic peak (RT), and
a mass spectral peak (m/z).48

Figure 3. Overview of autonomous metabolomics. MS1 and MS/MS
spectra acquisition, relative comparative analysis, and metabolite
identification are carried out simultaneously.

Figure 4. XCMS-based data streaming workflow (top left) allows data
upload and processing after each LC/MS run is performed,
dramatically reducing the processing time after the data are acquired
for the final sample (top right). A thousand XCMS Online data sets
were examined for their average processing time without streaming.
For low-resolution data (∼1.4 GB) and high-resolution data
(∼14.0 GB) over 10 and 20 h was required after the final LC/MS
analysis was performed, respectively. Streaming allowed a 7-fold
decrease in average processing time after data acquisition. Reprinted
from ref 40. Copyright 2014 Nature America, Inc.
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Annotation software recently introduced, use clustering
principles to deconvolve the data, where isotopic or adduct
ions will coelute and improve confidence in assigning identity.
The software uses within sample, sample-to-sample, or Bayesian
“priors” correlation to find clusters. A Bioconductor package in
R, called Collection of Algorithms for Metabolite pRofile
Annotation (CAMERA) was recently designed to be used in
conjunction with XCMS.48 It facilitates the annotation of
isotopic peaks, adducts, and fragment ions in peak lists using
RT-based grouping, peak shape integration/analysis, and
intensity correlation. CAMERA can reduce the number of
redundant features in the processed LC/MS data by
approximately 50%, decreasing the number of false identi-
fications and unnecessary MS/MS experiments that would
potentially be carried out.49,50 One of the disadvantages of
CAMERA is that it is biased toward the most abundant
features,27 but even so, very low abundant peaks would anyway
have a low likelihood of being identified due to the concen-
tration constraints of MS/MS analysis. Another spectral
matching-based annotation software, RAMclust,27 works on
the basis that two features resulting from the same metabolite
will have similar RTs and abundances across different samples
within a sample set. A similarity function allows the generation
of spectra through grouping features from a single metabolite
into a single cluster. Another aspect of RAMclust is the feature
finding parameter, which carries idMS/MS, enabling manual
interpretation and automatic database searching of feature
clusters.
Daly et al.51 use a Bayesian “priors” approach called

MetAssign. They point out that the level of confidence in
annotations varies across metabolites and data sets. To improve
confidence in peak annotation, probabilistic estimates of the
presence/absence of metabolites are provided based on
integration of information from multiple peaks. MetAssign is
also based on the principle that several peaks of an isotopic
series at the same RT should provide a higher confidence in a
putative identification than a single noisy peak. When validated
on an experimental data set, this software performed better
than CAMERA and mzMatch47 (another annotation software)
for peak annotation. It also provided a measure of confidence for
its putative annotations. Fernandez-Albert et al.52 showed that
peak aggregation (clustering) improved the statistical power of
LC/MS data when using analysis of variance (ANOVA) to select
features and multivariate methods such as partial least-squares
discriminant analysis (PLS-DA)53 and support vector machines
(SVM).54 They used four peak aggregation methods to take
advantage of and solve high variable collinearity. Two of the
clustering methods, “Non-Negative Matrix Factorization (NMF)
Reduction” and “Principal Component Analysis (PCA) Decom-
position” significantly improved the detection of significant
features. The recent surge of papers for improving peak anno-
tation shows the importance of reducing redundant features and
integrating a confidence level for the annotations may aid in
more efficient identification.
Credentialing. Even though these tools can aid in anno-

tating multiple features for a single metabolite and thus reduce
the redundancy of many of the metabolite features, a new tool
introduced by Mahieu et al.55 aids in identifying features, which
are of biological origin only. The idea is based on the principle
that untargeted metabolomic analysis results in thousands
of biological and artifactual features. Omitting these artifacts
that can arise from contaminants (from sample extraction or
carryover from previous experiments), chemical/background

noise detected by the MS, and bioinformatic noise (mis-
annotation during processing) will allow those more important
biological features to be assessed. This process of distinguishing
features of biological origin from artifactual ones is called
“credentialing”. To assess the efficacy of the credentialing algo-
rithm, Escherichia coli (E. coli) was grown in media containing
natural-abundance 12C glucose or media containing U−13C
glucose. The cultures were mixed together in defined ratios and
analyzed by untargeted LC/MS metabolomics. The credential-
ing algorithm identified and credentialed features based on
isotope-intensity ratios; intensities from coeluting isotopologue
pairs compared to the values expected in the culture volume
ratios. Signals of biological origin could thus be distinguished
from artifactual ones. This tool allowed the authors to optimize
the bioinformatic analysis, reducing overall noise features by
15% and increasing biological feature detection by 20%.
Another advantage to this tool, like the others aforementioned
that annotate unwanted feature peaks, is that the list of features
for MS/MS is dramatically reduced; when credentialing was
applied to the E. coli data set it reduced the number of
candidates from 23 567 to 2 912. Even if all these metabolites
cannot be correctly identified, knowing that the ones targeted
for analysis are of biological origin effectively improves the
metabolomic workflow, and moves toward finding those that
are meaningful. Similarly, others have used stable isotopes for
peak annotation but do not provide enough specificity to
remove all spurious peaks.56−59 Unlike these methods, the 13C
and 12C samples are run together to reduce RT variation, and
the absolute mass differences of U−13C and U−12C metabolites
are filtered rather than using predicted molecular formulas.
Therefore, the credentialing approach limits the amount of
noise and enhances the annotation of biologically relevant
peaks, meanwhile the other workflows are better for improving
formula annotation which would be useful for identification and
have a lower false discovery rate.

Calculating Mass Measurement Errors. Metabolite
identification can also be problematic in high throughput or
large-scale LC/MS runs. During these long run times the mass
accuracy suffers and the number of incorrectly assigned or
redundant peaks dramatically increases. The mass accuracy is
crucial for matching experimental accurate masses to those
found in databases, an increase of 10 ppm (ppm) in the mass
accuracy window results in a 10-fold increase in database hits.60

The major factor in maintaining a high accuracy window of less
than 5 ppm is the intensity of the ion signal.61−64 This can be
demonstrated when measuring the mass error of the lock mass
signal; its two isotopic peaks which are at lower concentrations
often have a larger ppm than the parent ion. Conversely when a
sample is too concentrated and peaks are saturated, the mass
accuracy can also suffer. When the mass accuracy shifts the
mass error window needs to be widened to perhaps 10−
22 ppm, which greatly increases the false positive rate. Methods
to correct the mass accuracy while data is being acquired
include using a reference mix of known ions which the mass
spectrometer uses to calibrate during the run. Ions that occur
naturally in most of the experimental runs can also be used.
There are also prediction models that have been designed to
estimate the mass measurement errors. These models do not
change the acquired data but aid in reducing the false positive
rate. One such model by Shahaf et al.60 uses XCMS and
CAMERA to process the data and annotate peaks. Mass
measurement errors are estimated using an annotated library of
reference metabolites which are obtained from multiple runs on
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the same MS instrument, containing information on peaks of
related features such as isotopes and adducts. The data are
grouped into bins that cover the available mass and intensity
range and a prediction model applied to the data which takes
into account the one-sided confidence levels of all the mass
measurement errors. The model predicts the error for an ion
peak’s mass-intensity pair within a range and is specific for the
instrument on which it was carried out, making it a reusable
model for the next experiment. A reduction in the false positive
rate of 21% on a small data set was seen and could be very
effective for larger high-throughput studies given that the
prediction models are optimized specifically for an instrument.
Statistical Analysis: Visualization and Deconvolution.

Multivariate and univariate statistical analyses can further aid in
finding meaningful metabolites from the hundreds of filtered
features postannotation. However, choosing the correct test is
challenging for those without a background in bioinformatics.
Recently, journals have become more stringent in making sure
that articles submitted for publication use the correct statistical
tests. Indeed Nature requires a statistical checklist to ensure
articles have statistical adequacy. Gowda et al.65 highlight the
appropriate use of different statistical tests, such as when to use
parametric vs nonparametric tests and paired vs unpaired tests
for metabolomic analysis. Paired tests can be especially useful in
human studies where there is high interindividual variability,
comparing differences between two measurements (e.g.,
metabolic response before and after drug treatment) for each
subject across the sample set.

Developments in visualizing results and filtering features have
facilitated characterization and structural identification in
untargeted metabolomics. MetaboAnalyst66 and XCMS Online
both provide comprehensive statistical analysis tools which
include univariate, multivariate, high-dimensional feature
selection, clustering, and supervised classification analysis.
Most recently the interactive cloud plot, interactive PCA, and
interactive heat map were introduced to XCMS Online.65,67

These interactive statistical read-outs let the user customize the
display and choose the most valuable features. The cloud plot
allows for instant visualization of each feature processed from
the untargeted data.67 The interactive version of this plot can
be manipulated to remove isotopes, change thresholds and ion-
intensity ranges, and zooms in on areas of feature overlap.65 By
clicking on a feature it is possible to instantly obtain infor-
mation about the feature; p-value, q-value, m/z, RT, intensity,
and peak group. One of its strengths is that coeluting features
and the hydrophilicity/hydrophobicity can be easily observed.
An example of an interactive cloud plot can be seen in Figure 5.
PCA and heatmaps have been used widely in metabolomic
research; however, the interactive versions of these tools allow
for instant modification by user definitions of criteria and
visualization of underlying information (Figure 6).
One of the most useful tools for finding meaningful

metabolites is meta-analyses and multigroup comparisons. With
these analyses it is possible to observe shared metabolic patterns
across multiple experiments and metabolite variation patterns
across multiple data groups. Meta-analysis can prioritize

Figure 5. Interactive multigroup cloud plot. Metabolite features whose level varies significantly (p < 0.01) across wild-type and mutant bacteria are
projected on the cloud plot depending on their RT (x-axis) and m/z (y-axis). Each metabolite feature is represented by a bubble. Statistical
significance (p-value) is represented by the bubble’s color intensity. The size of the bubble denotes feature intensity. When the user scrolls the mouse
over a bubble, feature assignments are displayed in a pop-up window (m/z, RT, p-value, fold change). When a bubble is selected by a “mouse click”,
the EIC, Box−Whisker plot, Posthoc, and METLIN hits appear on the main panel. Each bubble is linked to the METLIN database to provide
putative identifications based on accurate m/z. The variation pattern of glutamic acid (m/z 146.0468, MS/MS METLIN match) across different
mutants is shown by a box−whisker plot. Reprinted from ref 65. Copyright 2014 American Chemical Society.
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interesting features by integrating data from multiple studies and
help identify shared homologous patterns of metabolic varia-
tion across the results of multiple different experiments.
Multigroup analysis on the other hand is an extension of the
two-group/pairwise analysis that allows for the comparison of
multiple classes and identifies features whose variation pattern is
statistically significant across them. This type of analysis is
particular useful for a time-course experiment. An example of
multigroup analysis can be seen in Figure 5 where the metabolic
response to stress was analyzed across different types of bacteria.
Targeted Validation. While not an aspect of the bio-

informatic solution per se, it is worth noting that all untargeted
metabolomic analyses require further validation to remove
false positives and provide an additional level of confidence in
the follow up biological experiments. To accomplish this,
typically quantitative targeted analysis (triple quadrupole mass
spectrometry (QqQ-MS)) are performed using multiple
reaction monitoring (MRM). False positives can occur during
untargeted analysis therefore carrying out targeted QqQ-MS
with standards for each metabolite and can provide assurance
that an accurate fold change and p-value is being reported.

■ PATHWAY ANALYSIS: PUTTING METABOLOMIC
DATA INTO A BIOLOGICAL CONTEXT

On the quest to find meaningful metabolites in metabolomic
data, the ability to relate the identified metabolites to the
biological question at hand is imperative. Pathway/network tools
can aid in elucidating the roles the metabolites play in multiple
pathways. However, it is often the case that metabolomic analysis
can result in a number of metabolites that are not related to each
other, i.e., they are not in the same pathways or a thin coverage is
providing for one particular pathway; this can be due to some
metabolites being in flux, while others may be at a steady con-
centration and would not be differentially regulated. Further-
more, some metabolites cannot be mapped to any pathways.
Therefore, it is far from trivial to visualize metabolites with respect
to their presence and interactions in biochemical networks.
There have been a number of recently developed programs

which are designed to help with biological pathway and
network analyses. As part of the streaming approach

aforementioned, simultaneous MS/MS data are acquired for
features of interest based on statistical thresholds and matches
to metabolite databases from files already uploaded and
analyzed by XCMS Online. When two or more putatively
assigned metabolites are observed in the same pathway, the
MS1 data are mined for other metabolites in that pathway and
targeted for MS/MS analysis, essentially aiding pathway and
network analysis. Thus, streaming allows for biology-dependent
data acquisition (BDDA) to take place. BDDA differs from
DDA as MS/MS is not triggered on the basis of ion intensity.68

The BDDA concept was validated in the analysis of tumor
samples, where four metabolites were found belonging to the
same pathway (Figure 7).

Another notable program is mummichog, which can aid in
finding biological pathway activity.69 Instead of identifying the
metabolites before carrying out pathway/network analysis,
mummichog predicts biological activity using the m/z values of
both the statistically dysregulated and unchanged features.
Genome-scale human metabolic networks are then mined for
enriched pathways. These metabolic networks include KEGG,70

Recon1,71 and Edinburgh human metabolic network.72

However, mummichog can incorrectly assign metabolites since
one m/z could account for several different metabolites, but the
program’s design is to find networks rather than individual
metabolites. Indeed one of the major benefits of this program is
that one can bypass the initial laborious metabolite identification
process and move directly onto investigating whole pathways
that are disrupted and can be targeted in future studies. It also
eliminates user bias, where features are traditionally picked for
identification based on interest and biochemical relevance.50

The successes of this technology will likely progress as metabolic
models improve and as metabolomic data becomes integrated
into genome-scale metabolic models.
Another approach aids visualization of metabolites in related

pathways, through the creation of network “MetaMapp”
graphs in Cytoscape.73,74 These graphs integrate biochemical

Figure 6. Interactive heatmap with metabolomic data visualization.
Each row represents a metabolite feature, and each column represents
a sample. The Z-scale of each feature is plotted on the red-green color
scale. When a feature annotation tile (m/z, RT, or p-value) is selected,
its Box−Whisker plot, EIC (extracted ion chromatogram), MS
spectrum, and putative METLIN matches appear.

Figure 7. Biology-dependent data acquisition relies on statistics
generated after each sample run for mass spectrometry data acquisition
decision making. The representative example shows a decreasing P
value for a feature of interest over the time-course of data streaming.
When the P value for the features reaches 0.001, MS/MS is performed.
A two-tailed Wilcoxon signed-rank test was used to calculate the
statistical significance for n = 28. Box and whisker plots display the full
range of variation (whiskers, median with minimum−maximum;
boxes, interquartile range). Reprinted from ref 40. Copyright 2014
Nature America, Inc.
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pathway and chemical relationships using KEGG reactant
pair database,70 Tanimoto chemical and NIST mass spectral
similarity scores.75 Differential expression of metabolite nodes
are superimposed onto network graphs to help with the
interpretation of their involvement in metabolic networks and
facilitate biological interpretation. To overcome the issue of
incomplete mapping and also metabolites that lack any putative
identification or network mapping in current reaction data-
bases, metabolites are associated together based on their
chemical similarity as these compounds should be in theory
metabolized to each other. However, this can result in a loss of
overall biochemical clarity but still allows for visualization of
their involvement in pathways, which would otherwise not be
possible. The other advantages to this program are that it can
be used on any type of acquired metabolomic data (MS or
nuclear magnetic resonance spectroscopy) allowing for
integration between multiple analytical platforms. Multiple
species can be mapped at the same time as it is not constricted
by genomic information, and the maps can be automatically
updated as more additional information regarding the
identification of the metabolites is gathered.
Another notable method for network analysis is Metabolite

Set Enrichment Analysis (MSEA), part of the MetaboAnalyst
program.66,76,77 MSEA is based on gene set enrichment analysis
(GSEA) and is used to investigate the enrichment of predefined
groups of functionally related metabolites rather than individual
metabolites. This program was developed through the creation
of one encompassing metabolite library using HMDB,
PubChem,78 ChEBI,79 KEGG, BiGG,80 METLIN, BioCyc,81

Reactome,82 and Wikipedia, and importantly includes reference
concentrations for many metabolites. The main limitation of
MSEA is that it is biased to mammalian studies therefore
metabolomic experiments using other species will require
separate metabolite sets. However, MSEA can automatically
direct the investigator to biologically important pathways, and
remove manual searching of pathway databases. When a list of
compound names is entered into MetaboAnalyst, Over
Representation Analysis (ORA) is performed and evaluates
whether a metabolite set is represented more than expected by
chance within the given compound list. Figure 8 shows an

example of the output from a MSEA analysis of metabolites
that were dysregulated after the treatment of rats with ionizing
radiation exposure. A number of metabolic pathways were
dysregulated, specifically, two metabolites, taurine and isethionic
acid were mapped onto the taurine metabolism pathway.19

MeltDB, like MetaboAnalyst is a software platform that processes
raw data, carries out peak picking, statistical analysis, and
visualization. It was first introduced in 2008 but has recently
undergone a number of improvements including pathway
mapping via ProMeTra.83,84 ProMeTra allows visualization and
mapping of metabolite, transcript, and protein ratios to metabolic
pathways maps defined by the user.
The new bioinformatic tools developed for pathway analysis

use a number of different methodologies to achieve the same
end-goal but have different advantages over each other. For
example, some do not require the features to be identified first
such as mummichog, which finds metabolic pathways based on
m/z. Some require feature identification such as MetaMapp but
can fill in gaps for metabolites not found in any pathways.74

Others use the network analysis function as part of their
workflow as in the autonomous/BDDA approach and also as
part of the MetaboAnalyst software package.66

■ THE PAST AND THE FUTURE: STABLE ISOTOPES IN
METABOLIC ANALYSIS

Stable isotopes have been used in targeted MS-based
metabolomics as internal standards to validate the identity of
a metabolite and also for elucidating and tracing the
involvement of metabolites in pathways for the past 60
years.85−94 The stable isotopes have the same physicochemical
properties as natural abundance metabolites but contain at least
one atom that is one mass unit greater, thus the isotope can be
distinguishable from its natural abundance counterpart. A
known metabolite such as glutamine for example can be
introduced into an in vitro or in vivo experiment with at least
one of its atoms labeled with a stable isotope, such as [1-13C] or
[5-13C]. The incorporation of the 13C-labeled atom(s) into
other metabolites can show the potential impact of the labeled
metabolite in pathways and on the biology of the system being
studied. This is exemplified in a study where labeled 13C was
transferred from [5-13C]glutamine to acetyl coenzyme A for
lipid biosynthesis during hypoxia. The conversion of glutamine
was traced by reductive flux, catalyzed by isocitrate dehydrogen-
ase (IDH).95 This study revealed a novel biological role for
glutamine in lipogenesis during hypoxia. A follow-up study
using a quantitative flux model with [U−13C] glutamine and
glucose showed that fatty acid labeling from glutamine does
occur, but simultaneously with oxidative flux, and not by net
reductive IDH flux.96

A logical progression from the stable isotope targeted meta-
bolomic technology is to follow the full conversion of the
labeled isotopes in an untargeted unbiased manner, allowing
observation of the metabolic fate of the metabolites. For
metabolites such as glucose, glutamine, or acetyl coenzyme A
which are involved in multiple pathways, they can be used as
surrogate markers to infuse into the experiment and assess
widespread metabolic flux within a perturbed system
(influenced by a disease, environmental factor, genetic change,
microbial influence, xenobiotic use). However, infusing these
precursors will also result in precursor-related metabolic
perturbations. Furthermore, it is somewhat problematic to
introduce labeled precursors at biologically relevant concen-
trations. In rodent models most of these metabolites will be

Figure 8. An example of metabolite set enrichment analysis (MSEA)
using MetaboAnalyst.66 (A) Enrichment of metabolic pathways after
hypergeometric test to evaluate whether urinary metabolites upregu-
lated in rats after radiation exposure are represented more than
expected by chance within a compound list. (B) Taurine (Tau) and
isethionic acid (IseThio) were found to be involved in the same
pathway; taurine metabolism. Other metabolites in the taurine pathway
are not changed; taurocyamine (TauCyam), sulfoacetaldehyde
(SulfoAcet), hypotaurine (HypTau), and taurocholic acid (TauCho).
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completely metabolized within a few minutes and undetectable
in biofluids by LC/MS. Designing an experiment that shows
the direct involvement of a metabolite with the outcome of the
disease pathogenesis may be more useful. For example a
metabolite shown through conventional untargeted metabolo-
mics to be downregulated in a disease, could be administered as
a stable isotope, and reverse the disease phenotype. This would
allow the metabolic fate to be revealed which may not have
been seen by targeted analysis (due to only a small number of
metabolites being targeted) or conventional untargeted analysis
(due to the complexity of the data set). The simplest experi-
ment would be to have a fully labeled metabolite, where all the
13C atoms would be transferred to its products and cofactors.
More complicated experiments arise when the precursor
metabolite is partially labeled, since the metabolite may split
and those unlabeled atoms would not provide a labeled
isotopomer. Glucose, for example, splits into glyceraldehyde
3-phosphate and dihydroxyacetone phosphate during glycol-
ysis; these metabolites are converted into pyruvate or used for
lipid biosynthesis, respectively. Partial labeling of glucose would
allow the observation of how these atoms are distributed during
glycolysis. Another issue is synchronizing metabolism. Accord-
ing to Bar-Joseph et al.,97 cells need to be arrested so that they
start at the same phase, and even then they may lose their
synchronization after awhile. Therefore, determining what
phase the cells are in will help decide what time point is best
for sampling; this however is somewhat impossible for in vivo
experiments but useful for in vitro validation studies.
Similar to conventional untargeted metabolomics, which

ultimately provides a list of dysregulated features, stable isotope
untargeted metabolomics would provide the same list of
metabolites but containing a metabolically derived stable
isotope perturbed to the same extent (fold change and statis-
tical significance) as the natural abundance metabolite. This
would allow direct comparison of the paired isotopologues.
This concept is one that many metabolomic researchers would
seize upon to use but has been technologically difficult to set up
due to many constraints; algorithms capable of detecting
metabolite isotopologues are needed, and databases with
MS/MS fragmentation data are required for identifying the
isotopologues and isotopomers. Huang et al.98 have made great
strides into providing the bioinformatics tools to make this
possible. Using the XCMS platform they have extended its
capabilities to identify isotopologue groups that correspond to
isotopically labeled compounds. The aptly named X13CMS
program can thus be used to track the metabolism of iso-
topically labeled substrates in an untargeted manner revealing
valuable insights into metabolic mechanisms. Another major
advancement to stable isotope untargeted metabolomics has
been the recent development of a database containing thou-
sands of metabolite isotopes. This isotope-based database,
isoMETLIN will allow users to find all possible isotopologues
derived from METLIN and obtain MS/MS fragmentation data
on isotopomers99 (Figure 9).

■ CONCLUSIONS
Recent developments in bioinformatic tools have enhanced the
untargeted metabolomic workflow, enabling researchers to
identify metabolite features from LC/MS data and assign their
biological roles by identifying their involvement in chemical
pathways. Experiments carried out on high-resolution mass
spectrometers result in thousands of dysregulated features.
One of the biggest obstacles has been deconvolution and

identification of these features, the latter requiring highly biased
manual interpretation by the researcher. Automated multistep
workflows have alleviated this process by incorporating func-
tions that remove redundant features and enhance the
efficiency and efficacy of metabolite identification. The novel
use of stable isotopes for untargeted metabolomics and feature
annotation has further enhanced the ability of the investigator
to recover biologically relevant metabolites. Another major
advancement has been in the development of metabolite data-
bases and in silico fragmentation tools to help identify these
metabolites for functionality in biological pathways. Indeed the
area of growth for bioinformatics in metabolomic research will
be in finding the role of these metabolites, rather than creating
lists of biomarkers without mechanistic implications. This is
somewhat dependent on the further curation of metabolite
MS/MS fragmentation data in metabolite databases as well as
the development of network mapping tools.
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