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Abstract

Motivation: The goal of large-scale metabolite profiling is to compare the relative concentrations of

as many metabolites extracted from biological samples as possible. This is typically accomplished by

measuring the abundances of thousands of ions with high-resolution and high mass accuracy mass

spectrometers. Although the data from these instruments provide a comprehensive fingerprint of

each sample, identifying the structures of the thousands of detected ions is still challenging and time

intensive. An alternative, less-comprehensive approach is to use triple quadrupole (QqQ) mass spec-

trometry to analyze predetermined sets of metabolites (typically fewer than several hundred). This is

done using authentic standards to develop QqQ experiments that specifically detect only the targeted

metabolites, with the advantage that the need for ion identification after profiling is eliminated.

Results: Here, we propose a framework to extend the application of QqQ mass spectrometers to

large-scale metabolite profiling. We aim to provide a foundation for designing QqQ multiple reac-

tion monitoring (MRM) experiments for each of the 82 696 metabolites in the METLIN metabolite

database. First, we identify common fragmentation products from the experimental fragmentation

data in METLIN. Then, we model the likelihoods of each precursor structure in METLIN producing

each common fragmentation product. With these likelihood estimates, we select ensembles of

common fragmentation products that minimize our uncertainty about metabolite identities.

We demonstrate encouraging performance and, based on our results, we suggest how our method

can be integrated with future work to develop large-scale MRM experiments.

Availability and implementation: Our predictions, Supplementary results, and the code for

estimating likelihoods and selecting ensembles of fragmentation reactions are made available on

the lab website at http://pattilab.wustl.edu/FragPred.

Contact: gjpattij@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large-scale metabolite profiling aims to compare the relative con-

centrations of as many metabolites as possible between two or more

groups of biological samples (Patti et al., 2012). This is generally

done using high-resolution, high-mass accuracy quadrupole time-of-

flight (QTOF) or Orbitrap mass spectrometers to measure
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abundances of thousands of ions. The rate-limiting step when

using these instruments is establishing metabolite identifications.

Obtaining fragmentation data are often necessary for metabolite

identification, but there are challenges with both acquiring a breadth

of high-quality fragmentation data on targeted precursor ions, and

with identifying structures given the resulting fragmentation data.

As such, very few of the thousands of ions detected in large-scale

metabolite profiling experiments are structurally identified.

Several frameworks exist for using fragmentation data collected

with QTOF or Orbitrap instruments to structurally identify detected

ions. The most robust approach is to match the fragmentation spec-

trum of a research sample to the fragmentation spectrum of an

authentic standard. This can be done in cases where an experimental

spectrum matches a reference spectrum in a database (Tautenhahn

et al., 2012), or when the correct reference spectrum can be gener-

ated in the lab. When there is no matching reference spectrum, com-

putational methods can be applied to prioritize the structures most

likely to have generated the experimental fragmentation spectrum.

These methods fall into two categories: those that first precompute a

spectrum for every structure in a database and then match the

experimental spectrum against the in silico generated spectra (Allen

et al., 2014; Kangas et al., 2012; Kind et al., 2013), and those that

predict the structural features that likely generated the observed

spectrum, and then prioritize putatively matched database structures

on the basis of structural similarity (Heinonen et al., 2012; Shen

et al., 2014; Wolf et al., 2010).

An alternate, widely used approach for metabolite profiling

relies on triple quadrupole (QqQ) mass spectrometers. Metabolite

profiling with QqQ mass spectrometers is accomplished by perform-

ing targeted analysis on a relatively small number of compounds.

This can be employed in a discovery context to assay whether the

concentration of a targeted list of metabolites changes between bio-

logical samples. Although QqQ-based metabolite profiling provides

information about only a limited number of compounds, a major

advantage of this approach is that metabolite identifications can be

made efficiently once QqQ methods are established. To design a

QqQ method, researchers generally purchase commercial standards

and use them to identify precursor-to-product ion transitions that

can be readily measured by using the QqQ in either multiple reac-

tion monitoring (MRM) (Bajad et al., 2006; Jain et al., 2012) or

fragmentation product scanning (Han et al., 2012) mode. The

objective is to identify combinations of precursor-fragment pairs

that are specific to the metabolite being profiled, although the speci-

ficity is often not assessed explicitly.

To date, QqQ-based methods have not been applied to profile

more than several hundred metabolites. Here, we explore the possi-

bility of extending the use of QqQ-based experiments to analyze the

portion of the thousands of detected ions that match a precursor

mass in the METLIN metabolite database. First, we identify com-

mon fragmentation products from the experimental data in

METLIN. Then, we model the likelihoods of each precursor struc-

ture in METLIN producing each common fragmentation product.

With these likelihood estimates, we select ensembles of common

fragmentation products that minimize our uncertainty about metab-

olite identities. On the basis of these results, we suggest how our

method can be integrated with future work to develop large-scale

MRM experiments (Figure 1).

2 Methods

QqQ instruments allow sensitive and efficient profiling of ions pre-

sent in a sample. The major advantage afforded by using the QqQ is

that instead of profiling all fragmentation products produced by a

specific ion, it is possible to profile select subsets of precursor-

product pairs that are sufficient for ion identification. Historically,

these precursor-product pairs have been selected by profiling metab-

olite standards in the lab, without the use of databases, and are

assumed to be specific signatures of metabolite structures. We would

like to select informative precursor-product transitions using a data-

base, explicitly quantifying our uncertainties about the identities of

a detected ion’s fragments.

2.1 Uncertainty about structure identity given

fragmentation data
We quantify our uncertainty about the metabolite identity given

fragmentation data using conditional entropy:

HðSjF1; . . . ; FN ;PÞ ¼

�
X

p2P;f12F1 ; ... ;fN2FN ;s2S

Pðs; f1; . . . ; fN ;pÞ logðPðsjf1; . . . ; fN ; pÞÞ

where s 2 S are the unique structures in METLIN, F1; . . . ;FN are

the N fragments being considered, each with two states f 2 f�1; 1g
denoting the presence or absence of a fragment, and p 2 P are the

precursor masses. Although future work could focus on specific rela-

tive intensities of the fragments, as well as the expected chromato-

graphic retention time of the structures, here we restrict ourselves

to just the masses of the precursors and fragments. The data for

each metabolite are therefore a precursor mass coupled with a

binary string of length N indicating the presences and absences of

product ions.

To compute the conditional entropy, we require the joint prob-

ability of the structure and the mass spectrometry data, and the con-

ditional probability of the structure given the data. If there was a

database containing fragmentation data for every expected metabol-

ite, we could empirically estimate these probabilities using counts.

Currently, METLIN contains fragmentation data for only a portion

of the expected metabolite structures. To overcome this limitation,

we first model the likelihoods that each structure in METLIN pro-

duces each relevant fragment, and then approximate the joint and

posterior probabilities of those likelihoods.

Because we restrict our analysis of metabolites to those present

in the METLIN database, we express conditional probability of the

structure given the fragmentation data as:

Pðsjf1; . . . ; fN ; pÞ ¼
Pðs; f1; . . . ; fN ;pÞX

s2 S

Pðs; f1; . . . ; fN ;pÞ

To compute this probability, we factor the joint probabilities:

Pðs; f1; . . . ; fN ;pÞ ¼ Pðf1; . . . ; fN jsÞ PðsjpÞPðpÞ

where Pðf1; . . . ; fN jsÞ indicates the likelihood of a metabolite ioniz-

ing and producing fragments 1 . . . N given the structure representa-

tion s, PðsjpÞ is the likelihood of randomly selecting the structure

representation s from all representations that have the same precur-

sor mass, and PðpÞ is the prior probability of observing a particular

precursor mass.

To obtain the likelihood of observing a pattern of common frag-

ments, we assume that the likelihoods of the selected fragments are

conditionally independent, and obtain:

Pðf1; . . . ; fN jsÞ ¼
YN

i¼1

PðfijsÞ
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This is not true in general, but a common and convenient sim-

plifying assumption, which has in the past been applied to analysis

of text (Ng et al., 2002) and transcription factor binding motifs

(Bailey et al., 1995). Additionally, if we greedily select N fragments

based on information gain, the fragments added to the ensemble on

each iteration will be those with the least correlation with the

already selected fragments. The best possible set of fragments

would be a set of N independent fragments, such that

2N � 2jSP j > 0, and jSPj denotes the number of structures with the

same precursor. Finally, when quantifying the uncertainty about the

structure identities in experiments using just a single fragment (as in

precursor and neutral loss scanning, and some MRM experiments),

the independence assumption is not necessary.

2.2 Estimating likelihoods of ionization and common

fragment production
We use logistic regressions to model likelihoods of a structure ioniz-

ing and producing fragmentation products common in METLIN.

To limit over-fitting and eliminate uninformative predictors, we fit

the logistic regressions with an L1-regularized objective:

argmin
XM

i

wilogð1þ expð�yih
TsiÞÞ þ ajjhjj1

where yi indicates that metabolite i ionizes and produces a common

fragmentation product given the ionization mode and collision

energy, si is a vector representation of the chemical structure, h is a

vector of the fitted weights, a is a regularization constant, and wi is

the importance weight of each metabolite, of which there is a total

of M. The metabolite importance weights were used to offset the ef-

fect of having unbalanced class sizes by setting wi¼1 for yi ¼ �1,

and wi ¼ freqðy ¼ �1Þ=freqðy ¼ 1Þ for y¼1. We identified the

optimal regularization parameters for each model using 10-fold

cross-validation. All models were fit using LIBLINEAR (Fan et al.,

2008).

2.3 Representing chemical structures
We represent each structure in METLIN in two ways. First, we rep-

resent the presence and absence of substructures with a binary vec-

tor by using several chemical fingerprints. We used the Extended

Connectivity Fingerprint and Chemical Hashed Fingerprint from

JChem version 6.0.0 (2013, http://www.chemaxon.com) and FP2,

FP3, FP4 and MACCS fingerprints from the OpenBabel chemical

toolbox (OBoyle et al., 2011).

Second, we represent each METLIN structure in terms of its

similarity with each training set structure. We do this using the

Tanimoto similarity coefficient, which has been successfully applied

as a kernel in a variety of chemical classification and regression

problems (Girschik et al., 2012; Swamidass et al., 2005). The

Tanimoto coefficient is defined:

Tðsi; sjÞ ¼ ðsi ^ sjÞ=ðsi _ sjÞ

for two bit vectors si and sj. We used the Extended Connectivity

Fingerprints to compute the similarities between structures with

fragmentation data and all structures in METLIN.

2.4 Defining common fragmentation products
When a molecule fragments, some pieces of the molecule may be

charged while other pieces may be neutral. Pieces of the molecule

that are charged are defined as fragments and can be detected

directly by MS. Pieces of the molecule that are neutral cannot be

detected directly, but can be calculated indirectly by the differ-

ence between precursor and fragment mass-to-charge values. The

latter are defined as neutral losses. We consider both fragments

and neutral losses to be types of fragmentation products. When

considering fragments and neutral losses for multiple com-

pounds, fragments and neutral losses represent the same frag-

mentation event only when the precursor mass is the same.

However, no fragment/neutral-loss pair is exclusive to a single

precursor mass.

Our ability to detect a fragmentation product depends on the

ionization mode of the instrument, the mass being targeted,

the collision energy during fragmentation and the relative abun-

dance of the produced ion. We therefore define four sets of common

fragmentation products representing different minimal relative sig-

nal intensities, and define each product by its nominal mass, colli-

sion energy and instrument polarity. We consider a fragmentation

product common if it occurs in at least 50 structures, which we as-

sume to be the fewest number of structures that we could use to esti-

mate likelihoods of fragment production.

2.5 Evaluating fragmentation product predictions
We are interested in quantifying the extent to which we assign

higher likelihoods to structures that ionize and produce common

fragmentation products over structures that do not ionize or pro-

duce them. To do this, we use the area under the receiver operating

characteristic curve (AUC), which tracks the trade-off between true-

and false-positive rates over a range of decision boundary values. An

AUC of 1 represents perfect classification, and an AUC of 0.5 repre-

sents random classification.

Additionally, we compare performance conditioned on precursor

structures having the same mass. We do this because every QqQ

experiment contains masses of both the fragment and the precursor

ions, and this can be interpreted as a more realistic estimate of classi-

fication performance once a precursor and product ion are observed.

To evaluate AUCs conditioned on precursor mass, we group the val-

idation data by nominal precursor mass and report the average of

the AUCs in each precursor group that contains structures of both

classes.

2.6 Substructure search baseline
One type of QqQ experiment scans all metabolites for a characteris-

tic fragment or neutral loss (Han et al., 2012). The assumption in

these experiments is that the targeted fragmentation product is a

specific substructure representative of a class of metabolites. We test

how well this assumption holds-up for known fragmentation prod-

ucts, as well as how well it generalizes to other substructures. To do

this, we use the MetFrag annotations of the fragments present in the

METLIN database and perform a chemical substructure search on

the intact precursor structures. This is done using the substructure

search function in the OpenBabel chemical toolbox (OBoyle et al.,

2011). The result is a classifier that assigns a positive result to all

structures that contain the substructure, and a negative otherwise,

and reflects the conventional thinking in designing certain QqQ

experiments.

2.7 Selecting ensembles of fragmentation products
We select ensembles of up to 12 fragmentation products for MRM

experiments. To do this, for each precursor mass (rounded to the

nearest 0.1 Da) in METLIN, we first select the fragment with

the smallest resulting conditional entropy, and then greedily add

Large-scale metabolite profiling by mass spectrometry 2019
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each additional fragment. We do this using two sets of structures,

just those in KEGG, or all of METLIN.

2.8 Evaluating ensembles of fragmentation products
We use two metrics to evaluate the quality of the selected fragments:

(i) the portion of metabolites that would be detected given the

selected fragments, and (ii) the ranks of posterior probabilities for

true metabolite identities given that we selected at least one frag-

ment that they produce. To do this, we retrain fragment likelihoods

using 10-fold cross-validation, with the previously determined regu-

larization parameters. This time, the held-out structures are used to

evaluate our two metrics instead of fragment production likeli-

hoods. To evaluate which structures would be detected, we evaluate

how many of the held-out structures produce at least one of the

selected fragments. To evaluate the rank of the posterior likelihoods

of the true metabolite identities, we use the fragmentation pattern of

the selected metabolite and compute the posterior as defined in

Section 2.1 for every structure with that precursor mass.

3 Results and discussion

3.1 Description of METLIN
The METLIN database (Tautenhahn et al., 2013) is currently the

largest repository of structures and collision cell induced fragmenta-

tion patterns of known metabolites. Each metabolite standard was

analyzed in positive and negative ionization modes, and detected

fragmentation spectra are obtained at four collision energies on a

high-resolution QTOF mass spectrometer. All spectra are annotated

using MetFrag (Wolf et al., 2010), and a summary of the available

data are presented in Table 1. Our work uses METLIN as of

October 22, 2013.

In developing a method for metabolite identification using a

QqQ instrument, we first identify common fragmentation products

that will be detected given a sufficiently abundant precursor ion.

Assuming that fragment abundances sum to the precursor abun-

dance, we define four limit of detection thresholds relative to the

precursor abundance. Considering the nominal masses of all frag-

ments, we then identify the common fragmentation products for

each intensity threshold. This results in a total of 6683 fragments

summarized in Table 2.

3.2 Prediction of common-fragment production

likelihoods
To obtain likelihoods of observing common fragments given precur-

sor structures, we must predict whether the structures ionize given

the ionization mode, and whether they produce a common fragmen-

tation product given that they ionized and were exposed to a speci-

fied collision energy. The data in METLIN can be used to obtain

these likelihoods independently, first considering all structures with

mass spectrometry data to predict ionization, and then using only

the structures that ionize to predict fragmentation. This results in

average AUCs of 0.94 and 0.96 when predicting ionization for posi-

tive and negative modes, respectively. In an effort to avoid propagat-

ing errors between the models, we instead jointly predict ionization

and fragment production using all 11 676 structures in a single

model for each fragmentation product.

We use global and local descriptors to represent the structures in

METLIN. Locally, we use chemical fingerprints to represent each

structure in terms of its constituent substructures. Globally, we

represent the similarities between structures using Tanimoto coeffi-

cients between training and test structures. To limit over-fitting and

select only the most informative predictors, we fit out our logistic

regressions with an L1 regularization penalty. This results in a me-

dian of 299 predictors per fragmentation product, distributed as

shown in Figure 2. Interestingly, global similarities of structures be-

come more important as minimal signal intensities increase, suggest-

ing that molecular class is important for the abundance of the

detected fragment.

To evaluate the quality of the assigned fragment production like-

lihoods, we use AUC, which approximates the probability that an

occurring fragmentation event is assigned a higher likelihood than a

fragmentation event that does not occur. Considering the perform-

ance of just the structure representations, we obtain a median AUC

of 0.935. However, because QqQ experiments always provide pre-

cursor masses coupled with fragment masses, we could limit our

analysis to only those validation set structures that share precursor

masses. This reduces the validation sets from 1176 structures to a

median of 62 structures. Within these validation sets, our median

AUC improves to 0.957. The distribution of AUCs by fragmentation

product is shown in Figure 3.

To compare our likelihoods against a baseline method, we

emulated the conventional approach taken by QqQ mass spectro-

metrists, namely a substructure search. When used in previous QqQ

work, such as lipidomics (Han et al., 2012) or non-targeted CoA

profiling (Zimmerman et al., 2013), a specific fragment representa-

tive of a class of metabolites is selected, and precursors containing

the functional group that produces the fragment are considered

to be likely matches. We generalized this approach to work with

every annotated common fragment in METLIN. Although the sub-

structure search method has worked well for characteristic

fragments in past research, our results show that it does not extend

well to arbitrary annotated fragments, and that our likelihood esti-

mates are significantly better at prioritizing fragment-producing

precursors.

3.3 Selecting ensembles of fragmentation products for

QqQ experiments
Having shown that METLIN contains many commonly detectable

fragmentation products and that we are able to model their likeli-

hoods, we now aim to identify subsets of those fragmentation prod-

ucts for designing tractable QqQ experiments. Depending on the

type of biological sample and on the chromatography conditions of

the QqQ experiment, there is a varying capacity for profiling precur-

sor-product transitions. Because our goal is to discriminate between

a median of 62 structures, we need to select a median of at least six

fragments. We anticipate that not all selected fragments will be

Table 1. Database summary statistics

Field Count

METLIN structures 82 696

METLIN structures with MS/MS data 11 676

KEGG structures 17 252

KEGG structures with MS/MS data 2200

Structures ionized in positive mode 10 056

Structures ionized in negative mode 3796

Total fragments 1 877 378

Unique fragment annotations 133 898

Unannotated fragments 384 202

Unique neutral loss annotations 50 231

Unannotated neutral losses 617 225
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independent, and therefore select up to 12 fragments, which verges

on the technical limitations of high-throughput QqQ experiments.

We assess the performance of our method in 16 conditions,

when using four signal to noise thresholds, two ionization modes,

and two databases. To compare the performance of the method, we

use two different metrics. First, we emulate the conventional mode

of evaluating MRM methods, by simply requiring that a targeted

fragment be detected. To do this, for every structure that produces

at least one detectable fragment under the specified conditions, we

ask: what portion of the metabolites in the database produce at least

one of the selected fragments? To go further than the conventionally

designed MRM experiments, we then assess how well we are able to

rank detected structures given the selected fragments.

The complete results are available in Supplementary Figure S1

and Supplementary Table S1. Figure 4 shows that by selecting 12

fragmentation products, we detect as many as 0.973 of METLIN

structures ionizing in negative mode and 0.904 of METLIN struc-

tures ionizing in positive mode. In comparison, we detect as many as

0.970 of KEGG structures ionizing in negative mode and 0.842 of

KEGG structures ionizing in positive mode. Using 12 fragments,

Figure 5 shows that 0.825 of METLIN structures are returned in the

top 20 matches for positive-mode data and 0.700 of METLIN struc-

tures are returned in the top 20 matches for negative-mode data.

Comparatively, 0.961 of KEGG structures are returned in the top

20 matches for positive-mode data, while 0.893 KEGG structures

are returned in the top 20 matches for negative-mode data. This per-

formance can be valuable for some experiments, but our primary in-

tent is to provide a benchmark for future work improving on our

results.

3.4 Applications
We have demonstrated our ability to prioritize precursor structures

that produce common fragmentation products and to select sets

of fragmentation products that prioritize true metabolite identifica-

tions. The number of structures in METLIN and KEGG, however,

exceeds the number of MRM experiments that QqQ instruments

can perform in a single analytical run. This can be overcome by ei-

ther performing multiple analytical runs, or by limiting analysis to a

portion of all METLIN or KEGG structures, for instance to those

detected at sufficient abundance using MS1 profiling.

Applications of our database-driven design of MRM experi-

ments will be improved by incorporating two additional sources of

information about structural identities. First, after initial MS1 profil-

ing of the sample, the prior probability of an ion identity given the

precursor mass can be obtained by modeling the expected retention

times of each structure (Creek et al., 2011; Hall et al., 2012;

Stanstrup et al., 2013). Second, while our work selected all frag-

ments simultaneously, if multiple experiments are used to profile a

sample, fragments can be selected based on obtained experimental

results, restricting the likely structure candidates for each experi-

ment. We therefore anticipate that performance will improve as our

approach is applied to experimental data.

Table 2. Summary of selected common fragments

Signal threshold Fragment type Number of fragments Metabolites per fragment Annotations per fragment Fragments per metabolite

0.01 Frag 1963 131 (51–3033) 66 (1–575) 38 (0–155)

0.01 NL 1817 156 (51–10 051) 5 (0–80) 39 (2–155)

0.05 Frag 912 84.5 (51–2079) 39 (1–214) 11 (0–33)

0.05 NL 809 93 (51–10 036) 3 (0–30) 12 (0–33)

0.10 Frag 466 76 (51–1658) 29 (1–125) 5 (0–15)

0.10 NL 382 83 (51–9966) 2 (0–21) 6 (0–18)

0.20 Frag 189 66 (51–1046) 19 (1–73) 2 (0–8)

0.20 NL 145 89 (51–9775) 2 (0–16) 3 (0–10)

Signal threshold represents the minimal abundance of a fragment normalized by the total intensity of all fragments. NL denotes neutral loss. The last three

columns are formatted median (min-max).

Fig. 1. Schematic for our approach to using QqQ mass spectrometry for

large-scale metabolite profiling. Here, we demonstrate our workflow applied

to four different representative metabolites, each shown in a different row.

First, we use the metabolites with experimental spectra in METLIN to esti-

mate the likelihoods of common fragment production. Then, using these like-

lihoods we propose a method for selecting a subset of the most informative

fragments to design MRM experiments. Dashed spectra represent estimated

likelihoods, while grayed-out fragments represent fragments not selected for

MRM experiments

Fig. 2. Distribution of the number of fitted parameters to estimate fragment

production likelihoods by predictor type and signal intensity. The x-axis is for-

matted minimal signal, predictor type. The black line and white dots are box

and whisker plots, the gray area is the kernel density
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4 Conclusion

Although conventional large-scale metabolite profiling detects

thousands of ions with high-resolution mass spectrometers, the

analysis of these datasets and subsequent structural identification

of metabolites has proven challenging. In contrast, profiling and

structural identification of a targeted number of metabolites by

using QqQ-based MRM experiments is robust and efficient once

experimental methods are established. Here, we have explored

the design of QqQ-based MRM experiments toward profiling of

each metabolite in the METLIN and KEGG databases. To over-

come the lack of fragmentation data for a majority of the struc-

tures in these databases, we modeled the likelihoods that these

structures produce common fragmentation products. We demon-

strated that ensembles of our predicted fragmentation products

can be used to effectively prioritize METLIN and KEGG struc-

tures with the same precursor mass. Although this is a first step

toward addressing the challenge of developing MRM experiments

for tens of thousands of metabolites, future research is needed to

improve upon the specificity and reduce the number of MRMs

suggested here by using additional experimental parameters such

as retention time.
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