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Abstract Heat maps are a commonly used visualization

tool for metabolomic data where the relative abundance of

ions detected in each sample is represented with color

intensity. A limitation of applying heat maps to global

metabolomic data, however, is the large number of ions

that have to be displayed and the lack of information

provided about important metabolomic parameters such as

m/z and retention time. Here we address these challenges

by introducing the interactive cluster heat map in the data-

processing software XCMS Online. XCMS Online (xcm-

sonline.scripps.edu) is a cloud-based informatic platform

designed to process, statistically evaluate, and visualize

mass-spectrometry based metabolomic data. An interactive

heat map is provided for all data processed by XCMS

Online. The heat map is clickable, allowing users to zoom

and explore specific metabolite metadata (EICs, Box-and-

whisker plots, mass spectra) that are linked to the METLIN

metabolite database. The utility of the XCMS interactive

heat map is demonstrated on metabolomic data set gener-

ated from different anatomical regions of the mouse brain.
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1 Introduction

Untargeted metabolomics measures the levels of thousands

of metabolite features in a single analysis, providing a

snapshot of metabolism at the systems level (Patti et al.

2012; Patti et al. 2012). Metabolomic experiments generate

large data sets and scientists rely greatly on exploratory

data analysis including visual pattern recognition when

searching for interesting features in the data, like differ-

entially expressed metabolites (Gowda et al. 2014; Patti

et al. 2012; Xia and Wishart 2011). Several visualization

techniques have become common in global metabolomic

data analysis such as scores and loadings plots, heat maps,

scatter plots, volcano plots and recently designed cloud

plots. The cloud plot provides a descriptive visualization of

dysregulated metabolite features for quantitative analysis

and further structural elucidation. It offers the detailed

feature assignment including overlaid extracted ion chro-

matograms (EICs), Box-Whisker plot, mass spectrum and

potential METLIN metabolite database matches (Patti et al.

2012; Tautenhahn et al. 2012). An interactive cluster heat

map is a compelling follow-up to the implementation of the

interactive cloud plot, allowing for an added dimension of

data visualization to help in sample classification and the

description of features that are driving the classification.
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Heat maps are one of the most widely used bioinfor-

matic graphic displays (Wilkinson and Friendly 2009).

They are especially popular in gene expression analysis

and visualization of genomic data sets in general (Eisen

et al. 1998; Wu and Noble 2004). Similar to genomic

experiments, mass spectrometry-based metabolomic

experiments present thousands of data points, and while

heat map matrices are useful for pattern recognition they

are largely limited by their two dimensional representation.

The traditional, cluster heat map, with an extensive history

of data representation in biological and biomedical publi-

cations, is frequently displayed in static form (Wilkinson

and Friendly 2009). While color-coded matrix elements

and adjacent dendograms indicate functional relationships

among variables and samples, traditional heat maps do not

offer the opportunity to sort the data on different axes, to

filter the data or to focus on specific elements of the map, a

difficulty compounded by the large number of represented

elements. To overcome this limitation we have developed

an ‘‘interactive’’ matrix to display the underlying infor-

mation, behind the color-coded tiles, about each metabolite

feature. The interactive heat map was developed as a tool

within XCMS Online interface (Gowda et al. 2014), a

widely used data processing platform in untargeted meta-

bolomics. The multi-group comparison across three ana-

tomical regions of mouse brain was applied to highlight the

illustrative strength of the interactive heat map.

2 Materials and methods

2.1 Metabolome extraction and reconstitution

Animal and tissue preparation protocol is provided in

supplementary information. The NSG mouse strain was

chosen for its abilities to support humanization leading to

numerous applications in oncology and infectious disease

research. Brain dissection was performed on five speci-

mens from the same genetic strain, males and similar ages.

Each subregion of brain tissue was extracted using a

MeOH:H2O (4:1, v/v) solvent mixture. An adjusted volume

of 1 mL of cold solvent was added per 10 mg tissue, probe

sonicated for 5 s, and incubated in liquid nitrogen for

1 min. The samples were then allowed to thaw at room

temperature and then probe sonicated for another 5 s. To

precipitate proteins, the samples were incubated for 1 h at

-20 �C, followed by 15 min centrifugation at

16,0009g and 4 �C. The resulting supernatant was

removed and evaporated to dryness in a vacuum concen-

trator (LABCONCO CentriVap Benchtop). The pellet was

reconstituted in water and protein concentrations were

measured using PierceTM BCA Protein Assay Kit (Thermo

Scientific, Rockford, IL) as a reference for metabolite

reconstitution. The dry extracts were then reconstituted in

ACN:H2O (1:1, v/v) normalized by the sample’s protein

level, sonicated for 10 min, and centrifuged 15 min at

16,000 g and 4 �C to remove insoluble debris. The super-

natants were transferred to HPLC vials and stored at

-80 �C prior to LC/MS analysis.

2.2 LC/MS analysis

Tissue extracts were analyzed on 6550 iFunnel QTOF mass

spectrometer (Agilent Technologies) interfaced with 1290

UPLC system (Agilent Technologies). Samples were ana-

lyzed using a Luna Aminopropyl, 3 lm, 150 9 1.0 mm

I.D. HILIC column (Phenomenex). The mobile phase was

composed of A = 20 mM ammonium acetate and 40 mM

ammonium hydroxide in 95 % water and B = 95 % ace-

tonitrile. The remaining 5 % were acetonitrile or water,

respectively. The linear gradient elution from 100 % B

(0–5 min) to 100 % A (50–55 min) was applied

(A = 95 % H2O, B = 95 % ACN, with appropriate addi-

tives). A 10 min re-equilibration time was used, to ensure

the column re-equilibration and maintain the reproduc-

ibility. The flow rate was 50 lL/min, and the sample

injection volume was 5 lL. ESI source conditions were set

as follows: dry gas temperature 200 �C and flow 11 L/min,

fragmentor 380 V, sheath gas temperature 300 �C and flow

9 L/min, nozzle voltage 500 V, and capillary voltage

-2,500 V in ESI negative mode. The instrument was set to

acquire over the m/z range 50–1,000, with the MS acqui-

sition rate of 2 spectra/s.

2.3 Data analysis

Data were analyzed by using multi-group method on the

web interface for interactive XCMS Online, which is freely

available at https://xcmsonline.scripps.edu. It allows users

to either upload datasets using a java applet or select pre-

uploaded datasets on XCMS Online. Following the upload

of raw data files, users can select preset parameters (or

customize them) depending on the instrument platform in

which the data were acquired. The parameters are dis-

played in the web browser using the jQuery-UI framework,

with each tab organized by category. Users can define

parameters for statistical analysis (parametric/non-para-

metric, paired/unpaired) based on the type of experiment

and data. The raw data files are than processed for peak

detection, retention-time correction, chromatogram align-

ment, metabolite feature metadata, statistical evaluation,

and putative identification through METLIN standard

database matching. Parameter settings for XCMS pro-

cessing of our demonstration data acquired by HILIC were

as follows: centWave for feature detection (D m/z =

15 ppm, minimum peak width = 10 s and maximum peak
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width = 120 s); obiwarp settings for retention-time cor-

rection (profStep = 1); and parameters for chromatogram

alignment, including mzwid = 0.015, minfrac = 0.5 and

bw = 5. The relative quantification of metabolite features

was based on peak areas. Peak intensity or abundance,

expressed in ion counts, refers to peak height and is often

used to predict the quality of MS/MS data that can be

collected. For comparative analysis across different

metabolites in the heat map, peak areas were converted to

z-scores. The row Z-score or scaled expression value of

each feature was calculated as mean abundance subtracted

from the abundance and then divided by the standard

deviation across all the samples.

3 Results and discussion

The interactive heat map concept is derived from the recently

designed XCMS Online platform which has been developed

to deconvolve metabolomic data, simplify data analysis and

customize data output (Gowda et al. 2014). Metabolomic

data display has been accomplished through the interactive

visualization tools that include cloud plots (two-group and

multi-group), PCA scores and loadings plots, and Venn

diagrams. The cluster heat map was implemented as an easy-

to-use interactive graphic to enable the user to easily explore

the data, validate its integrity and provide useful insights

about dysregulated metabolite features and sample grouping.

The key to our new interactive XCMS Online platform is the

integration of univariate and multivariate statistical data

processing and metabolite feature assignment. Metabolite

identification is facilitated through the link with standard

METLIN database (http://metlin.scripps.edu/index.php)

(Tautenhahn et al. 2012; Zhu et al. 2013) providing

potential compound matches and when available, MS/MS

spectra and biology relevant information via the link to

human metabolome database (HMDB) (Wishart et al. 2009),

LIPID MAPS (Fahy et al. 2007), and KEGG pathway data-

base (Kanehisa and Goto 2000).

As experiments are processed on XCMS Online, the

data matrix comprising the metabolite feature values (peak

areas and maximal peak intensities) across samples is

collected and stored. When a user selects the interactive

heat map visualization tool in XCMS Result Summary

menu (Supplementary Fig. 1), the web server’s PHP calls a

python and R script to load the data file and several

JavaScript libraries enable the heat map display and

exploration of metadata (Skuta et al. 2014). Meta infor-

mation is made available to users during mouse rollovers or

by clicking a link. Depending on the context, data may be

dynamically retrieved from a database or file on the server

using AJAX technology. The visualization process of large

number of metabolite features of interest (top 1,000

features ranked by p value) has been optimized using

compression and limiting metadata transfers to maintain a

responsive graphical user interface. Only the top 1,000

dysregulated features can be explored interactively; how-

ever the entire set of dysregulated features can be explored

through the Results table and the statistical results can also

be exported. Interactive manipulations comprise of modi-

fication of display parameters, change of scale, selections

of feature tiles and queries related to feature metadata. The

display modification for the heat map allows users to sort

the table by one of the feature metadata fields, either m/z,

RT or p value (Fig. 1, right ‘‘heat map’’ panel in blue–

white scale), which is useful for searching underlying

patterns that correlate with RT and m/z, such as isotopes

and adducts. The key feature introduced during the inter-

active display is a cursor controlled heat map that provides

m/z values, retention times, and p values by hovering the

cursor over each element (Fig. 1). For hierarchical clus-

tering analysis (HCA), Euclidean distance is used as a

distance measure and the complete linkage is applied as

unsupervised clustering method. In the future, the cluster-

ing may be upgraded by the addition of different similarity

measures (e.g. Correlation, Cosine Correlation, and many

more) and clustering algorithms (e.g. single linkage,

average linkage, Ward’s method).

Once the heat map with associated dendogram has been

displayed, the user can zoom into each node of the clas-

sification tree to access the more contextual metadata about

the metabolite features. The metadata are dynamically

loaded after a specific feature is selected. The information

includes the variation of peak areas (Box-Whisker plots)

and abundances (aligned EICs) across different sample

classes, mass spectral data and links to METLIN matches.

The interactive heat map is an alternative to the cloud plot

allowing the user to visualize the large multidimensional

untargeted metabolomics results and screen for the signifi-

cantly altered features by customizing the display. Further-

more, both the interactive heat map and cloud plot allow for

zooming to magnify a desired area of the plot, which is very

useful for plots with a large number of data points (Gowda

et al. 2014). On the cloud plot the metabolite features are

projected over the aligned total ion chromatograms

depending on their retention time (x-axis) and m/z (y-axis)

(Fig. 2). Each bubble in the plot corresponds to a metabolite

feature and the size of the bubble denotes the extent of the

fold change (Patti et al. 2012). The heat map mirrors the data

table format with the rows representing metabolite features

and columns representing the samples, where color gradient

denotes the normalized abundance of each metabolite fea-

ture across the samples (Deu-Pons et al. 2014). The com-

plementary value of a cluster heat map in comparison to a

cloud plot lies in the ability to identify clusters of samples

with similar metabolic patterns as well as groups of
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discriminating metabolites that drive sample clustering.

Since the clustering is an unsupervised method it allows

users to see any expected class separation of the samples and

the features with a high clustering coefficient (Meunier et al.

2006). The cluster heat map can be used to visualize the

results of two group as well as multi-group analysis. As an

example, we have analyzed global metabolic profiles across

three different regions of normal mouse brain: hippocampus,

cerebellum and stem (Fig. 1). The untargeted profiling in

hydrophilic interaction mode, followed by multi-group

comparison enabled the detection of 516 differentially

expressed metabolite features (p value B 0.01, Intensity

C 10,000) across three anatomical brain regions. HCA

confirmed three distinct clusters defined by the samples of

hippocampus, cerebellum and stem. The diversity of meta-

bolic patterns across these three regions of brain and their

relation to region-specific function should be further inves-

tigated by the analysis of statistically discriminative and

Fig. 1 Interactive, sortable heat map with customized metabolomic

data visualization. Each row represents a metabolite feature and each

column represents a sample. Metabolite features whose levels vary

significantly (p \ 0.01) across three different brain regions (stem,

cerebellum and hippocampus) are projected on the heat map and used

for sample clustering. The row Z-score or scaled expression value of

each feature is plotted in red–green color scale. The red color of the

tile indicates high abundance and green indicates low abundance.

When a user scrolls the mouse over the metabolite cluster tree on the

left, the selected node is displayed in zoomed-in version. When a

feature assignment tile (m/z, retention time or p value) is selected, its

Box-Whisker plot, extracted ion chromatogram (EIC), MS spectrum

and METLIN matches appear on the bottom of the main panel (Color

figure online)
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biochemically related metabolites. For a demonstration, the

variation pattern of a metabolite feature with m/z 331.265 is

shown across different brain regions by a color pattern on the

heat map, by the Box-Whisker plot and the aligned EIC

(Fig. 1, zoom right below). This metabolite feature results in

17 matches in METLIN database, using the accurate mass

measurement and demonstrates the importance of further

MS/MS matching for metabolite identification (Tautenhahn

et al. 2014; Zhu et al. 2013). The position of this metabolite

feature is also indicated on the cloud plot depending on its

m/z and retention time following the chromatographic gra-

dient (Fig. 2).

Currently little is known about the metabolite distribu-

tion across the subregions of the brain. Brain tissue pro-

filing may be valuable for understanding local metabolic

activity and could lead to the observation of metabolic

differences across anatomical regions of brain. It can pro-

vide the important insights needed for functional charac-

terization of brain regions and brain metabolism in general

(Ivanisevic et al. 2014). Brain metabolomics has been

highlighted, over the last decade, by studies of neurological

disorders and enhanced characterization of central nervous

system (CNS) metabolome (Dumas and Davidovic 2013;

Mandal et al. 2012; Nicholson et al. 2012). The potential of

untargeted brain metabolomics lies in the comprehensive

measurement of small molecules that play an essential role

in neurophysiology (for example, neurotransmitters, sig-

naling lipids, and osmolytes) along with regulators of

oxidative stress and intermediary and energy currency

metabolites (Piomelli et al. 2007).

Many additional developments are planned to improve

the current implementation of the interactive heat map tool

and XCMS Online in general. The essential ones include the

increase of raw data upload speed (Rinehart et al. 2014),

biochemical pathway mapping of feature clusters, auto-

mated metabolite identification through MS/MS matching

against METLIN metabolite database and the exploration of

chemical structure similarities within clusters.

4 Concluding remarks

An interactive cluster heat map has been created to improve

our ability to explore complex metabolomic data. The

metabolomic interactive heat map allows for identification

of clusters across data sets and detailed analysis of metab-

olite features, adding a new dimension to metabolomic data

visualization and deconvolution. The incorporation of the

interactive heat map into XCMS Online also facilitates rapid

data exploration and higher dimensional data displays to

Fig. 2 Interactive cloud plot with customized metabolomic data

visualization. Metabolite features whose expression levels vary

significantly (p \ 0.01) across three different regions of brain (hip-

pocampus, cerebellum and stem) are projected on the cloud plot

depending on their retention time (x-axis) and m/z (y-axis). Each

metabolite feature is represented by a bubble. Statistical significance

(p value) is represented by the bubble’s color intensity. The size of

the bubble denotes feature intensity. When the user scrolls the mouse

over a bubble, feature assignments are displayed in a pop-up window

(p value, q value, m/z, RT). When a bubble is selected by a ‘mouse

click’, Box-Whisker plots, the EICs, Mass spectrum, Post-hoc (not

shown), and METLIN matches appear on the main panel. Each

bubble is linked to the METLIN database to provide putative

identifications based on accurate m/z
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provide researchers a novel means of viewing their data to

understand biological relationships.

Acknowledgments This work was supported, in part, by the Uni-

versity of Nebraska Foundation which includes individual donations

from Dr. Carol Swarts and Frances and Louie Blumkin and National

Institutes of Health Grants P01 MH64570, RO1 MH104147, P01

DA028555, R01 NS36126, P01 NS31492, 2R01 NS034239, P01

NS43985, P30 MH062261 and R01 AG043540.

Conflict of interest The authors declare no conflict of interests.

Compliance with ethical requirements NOD scid IL2 receptor

gamma chain knockout, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, (NSG)

mice (The Jackson Laboratories, Bar Harbor, Maine, USA; stock

number 005557) were obtained from an established breeding colony

and housed under pathogen-free conditions in accordance with ethical

guidelines for care of laboratory animals at the National Institutes of

Health and the University of Nebraska Medical Center.

References

Deu-Pons, J., Schroeder, M. P., & Lopez-Bigas, N. (2014). jHeatmap:

An interactive heatmap viewer for the web. Bioinformatics,.

doi:10.1093/bioinformatics/btu094.

Dumas, M. E., & Davidovic, L. (2013). Metabolic phenotyping and

systems biology approaches to understanding neurological

disorders. F1000Prime Reports, 5, 5–18.

Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998).

Cluster analysis and display of genome-wide expression patterns.

Proceedings of the National Academy of Sciences, 95,

14863–14868.

Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID

MAPS online tools for lipid research. Nucleic Acids Research,

35, 21.

Gowda, H., et al. (2014). Interactive XCMS Online: Simplifying

advanced metabolomic data processing and subsequent statistical

analyses. Analytical Chemistry, 86, 6931–6939.

Ivanisevic, J., et al. (2014). Brain region mapping using global

metabolomics. Chemistry & Biology, 21, 1575–1584.

Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of

genes and genomes. Nucleic Acids Research, 28, 27–30.

Mandal, R., et al. (2012). Multi-platform characterization of the

human cerebrospinal fluid metabolome: A comprehensive and

quantitative update. Genome Medicine, 4, 38.

Meunier, B., Dumas, E., Piec, I., Béchet, D., Hébraud, M., &
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