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Abstract

Motivation: Metabolite databases provide a unique window into metabolome research allowing

the most commonly searched biomarkers to be catalogued. Omic scale metabolite profiling, or

metabolomics, is finding increased utility in biomarker discovery largely driven by improvements

in analytical technologies and the concurrent developments in bioinformatics. However, the suc-

cessful translation of biomarkers into clinical or biologically relevant indicators is limited.

Results: With the aim of improving the discovery of translatable metabolite biomarkers, we present

search analytics for over one million METLIN metabolite database queries. The most common me-

tabolites found in METLIN were cross-correlated against XCMS Online, the widely used cloud-

based data processing and pathway analysis platform. Analysis of the METLIN and XCMS common

metabolite data has two primary implications: these metabolites, might indicate a conserved meta-

bolic response to stressors and, this data may be used to gauge the relative uniqueness of potential

biomarkers.

Availability and implementation. METLIN can be accessed by logging on to: https://metlin.scripps.

edu

Contact: siuzdak@scripps.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Search analytics is now regularly utilized as an unbiased and an-

onymous method to survey populations. In a sense each query is a

report of some circumstance or set of circumstances that has lead

the user to carry out a search. For instance the user might be

searching a symptom they are experiencing or the search may reflect

a personal bias, in either case this information can be informative

within the context of a community. Recent examples include the use

of search data to model influenza outbreaks (Ginsberg et al., 2009),

and in another case researchers were able to design a rough measure
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of regional racism across the United States (Chae et al., 2015). With

this in mind and starting from the premise that the majority of users

searching the METLIN database are from the population engaged in

metabolomic studies we set out to use analytics to survey the broad

range of metabolomics research reflected in METLIN search data

and reveal the most commonly encountered biomarkers.

The potential impact of biomarker research is far reaching,

involving diagnosis, prognosis, drug efficacy and the development of

personalized medicine. One particularly intriguing aspect of bio-

marker discovery is the prospect of reducing the overall cost of

health care by increasing the level of medical care through early

diagnosis, or through the development of patient specific therapies

(Davis et al., 2009). It is therefore understandable that a significant

effort has been dedicated to the discovery of unique disease-specific

molecules as evidenced by the thousands of biomarker-related

papers (Drucker and Krapfenbauer, 2013; Poste, 2011).

The importance of biomarker discovery coupled to the accessi-

bility of new, high sensitivity analytical technology has contributed

to this broad interest (Poste, 2011), however a lack of standard best

practices has meant that discoveries often have very little practical

value. The thousands of papers that have been published on bio-

markers have yielded relatively little success (Poste, 2011), for ex-

ample while the number of biomarker publications have increased

by over 20% each year, the number of patent applications for

clinical biomarkers remains level (Drucker and Krapfenbauer,

2013). Metabolomics-based biomarker discovery publications are

progressively contributing to this body of work and also show the

same trends, with the exception of the robust inborn errors of me-

tabolism screens, there are relatively few new clinical metabolite

based tests (Xia et al., 2013).

Metabolomic experiments, whether they are accomplished

through the use of traditional GC/MS technologies (first demon-

strated in the early 1970s by Linus Pauling and Horning; Horning

and Horning, 1971; Pauling et al., 1971), or current liquid chroma-

tography mass spectrometry (LC/MS) instrumentation, are well

suited for gaining a comprehensive and quantitative view of the

metabolome. These approaches have the ability to detect thousands

of metabolites from biological samples with high resolution, high

sensitivity and a dynamic range typically exceeding four orders of

magnitude (Patti et al., 2012). As a result, it is possible to quickly

generate datasets rich in metabolite information.

A typical workflow for metabolomics involves several steps;

first, mass spectral data is collected for each sample in each sample

group. Next the data is analyzed by any number of data processing

platforms including Metabolic profiler (Bruker), Simca-P

(Umetrics), Markerlynx (Waters), Mass Profiler Pro (Agilent),

MetAlign (Lommen, 2009), MZmine (Pluskal et al., 2010),

MAVEN (Melamud et al., 2010), MetaboAnalyst (Xia et al., 2012)

and XCMS Online (Tautenhahn et al., 2012) to identify the features

that significantly change between sample groups. The significantly

dysregulated features are then given a putative identification by

searching metabolite databases such as METLIN (Supplementary

Fig. S1).

METLIN (Smith et al., 2005) is a highly accessed database used

for metabolite identification. Since its inception in 2004 METLIN

has grown to contain over 240 000 metabolites, 13 000 of which

also have MS/MS data in both positive and negative ionization

modes at four different collision energies (Supplementary Fig. S1).

More than 10 000 users and over 600 citations of the original publi-

cation are indicators of its wide application. In addition, METLIN

has been integrated with XCMS Online, providing metabolite iden-

tifications for the users of this cloud-based data processing platform.

The consistent increase in METLIN use (Supplementary Fig. S1) is

largely due to the wide spread adoption of mass spectrometry as an

exploratory tool by biologists and biochemists. This has been facili-

tated by the increased access to mass spectrometry technologies that

are sensitive and easy to use. Furthermore, the development of user-

friendly bioinformatic platforms and integrated statistical tools

(mentioned earlier) has removed a significant technical barrier

(Gowda et al., 2014).

Technology has also leveled the playing field so that researchers

are typically using similar tools, which for the most part are com-

posed of liquid chromatography coupled to an atmospheric pressure

ionization source and either time-of-flight (TOF), quadrupole time-

of-flight (QTOF) or quadrupole orbi-trap (Q-Exactive) mass ana-

lyzers with a consistent degree of quantitative and mass accuracy.

Thus, the masses searched in METLIN provide a representation of

the discriminatory metabolites from metabolomic experiments.

Here, in order to gain a perspective on the metabolites being

searched, METLIN archival data was searched and examined to de-

termine commonly observed metabolites across one million queries.

2 Results and discussion

Researchers using metabolomics are currently investigating a wide

array of biological problems, thus the masses searched in METLIN

should be a reflection of the diversity of these experiments.

However, because metabolism is to some extent conserved we also

expect to find commonly dysregulated metabolites to be searched at

a high frequency. This assumption was evaluated using Figure 1,

which provides an overview of database queries that were submitted

by approximately 5000 researchers. This data represents an

Fig. 1. A cumulative mass spectrum created from a million searches of the

METLIN metabolite database. (Top) representation of queries logged from

across the globe. (Bottom) The mass spectrum presents the total output of

the searches that return METLIN identifications; queries that returned no

METLIN IDs have been excluded from this plot (�9 M). The x-axis represents

the m/z searched and the y-axis the number of times that particular m/z has

been searched. The inset shows the output of a METLIN query
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aggregate of one million searches that returned METLIN identifica-

tions. Interestingly, while a great diversity of metabolites was

searched, we found that there are in fact preferentially searched

masses. Additionally, over 80% of the searched metabolites fell into

a bimodal distribution between the mass ranges of 150 and 450

(Fig. 1), consistent with small molecules that are measured in metab-

olomics. Because commonly dysregulated metabolite masses will be

detected at high frequency and therefore will be searched more

often, we suggest that the distribution of this ‘mass spectrum’ is a

manifestation of a conserved metabolic response.

The results obtained from our analysis of METLIN searches pro-

duced a list of masses, the number of times each mass has been

searched and the number of metabolite IDs that are returned for

each query as represented by their neutral mass (Fig. 2). The most

frequently searched mass in METLIN was 180.06. We have puta-

tively identified this metabolite as glucose by accurate mass, al-

though this query returns a total of 31 possible metabolites when

using the database’s default mass accuracy of 30 ppm. This example

illustrates an important consideration that is implicit in this kind of

meta-data analysis. Some commonly searched masses might be the

result of the dysregulation of many isomers as opposed to the dysre-

gulation of one common molecule.

Metabolite identification via MS/MS is still obligatory in metab-

olomics if one wishes to classify a metabolite as either a specific or a

nonspecific signal. Indeed, molecule identification is the most crit-

ical aspect of untargeted metabolomics when attempting to under-

stand metabolism. The identification process is outlined in

Supplementary Figure S2 where a search returns possible metabol-

ites based on the input mass accuracy and collision energy and me-

tabolite identification is facilitated by the comparison of research

MS/MS data to MS/MS data compiled in the METLIN database by

matching the precursor mass followed by MS/MS matching based

on x-rank (Mylonas et al., 2009). METLIN MS/MS searches were

not as frequently performed as accurate mass searches, nor were

these searches stored, we instead mined XCMS Online to facilitate

the metabolite identifications.

To identify core metabolites and further validate (Supplementary

Fig. S2) our assumption that the masses most often searched in

METLIN are related to the most commonly dysregulated bio-

markers, we also searched meta-data generated by XCMS Online.

We were able to cross-compare the METLIN hit list to the most

common biomarkers observed in a subset of 2000 XCMS Online ex-

periments. XCMS Online (xcmsonline.scripps.edu) is a web-based

platform that was designed to simplify the data analysis of untar-

geted metabolomic experiments. In 2012 an email was sent out to

all XCMS Online users with an invitation to participate in this com-

munal effort to identify shared metabolites across a heterogeneous

population of biological specimens and a wide spectrum of pheno-

typic conditions. Participation in this meta-analysis was done on an

opt-in basis only and all data was masked, anonymized and aggre-

gated for statistical analysis. These experiments show that some of

the searched masses are most likely due to the appearance of isomers

for example while glucose searched at a high frequency it was not

commonly dysregulated in real samples.

Using the XCMS data as a guide, we next analyzed a battery of

sample types using LC-MS/MS in an attempt to identify the most

common biomarkers from real samples. MS/MS data for the most

common metabolites encountered in the communal XCMS Online

experiments are presented in the Supplementary Material. From the

100 most frequently occurring metabolites with available MS/MS

data 24 compounds were identified and listed in Supplementary

Table S1, another 24 metabolites were characterized as

phospholipids. MS/MS spectra were available for an additional 52

compounds but these have not been identified yet (all spectra and

tables are available as Supplementary Material). Comparative ana-

lysis across XCMS results and the most common METLIN searches

revealed a significant overlap. We found that all XCMS results, with

exception of 4 metabolites, are within the 90th percentile of the most

searched masses in METLIN and half of those in the 90th percentile

actually fall within the 99th percentile.

The highest ranked identified molecule in Supplementary Table S1

is linoleic acid. This fatty acid is a useful marker for fat intake and me-

tabolism in humans (Arab, 2003). Although, it is interesting that this

molecule would feature so prominently in our list of common metab-

olites as we can reasonably exclude the possibility that a dispropor-

tionate number of XCMS Online users are investigating nutrition. To

understand how often this metabolite is reported as a biomarker we

performed an ISI web of knowledge search for the name of the metab-

olite paired with the word biomarkers. The search produced 273 sep-

arate publications and, following a more detailed survey of the

literature, we found that there are at least 10 different conditions

linked to the dysregulation of linoleic acid.

The published reports coupled to the MS/MS data shed light on

the high occurrence of searches for m/z 281.24. We find that linoleic

acid is a commonly dysregulated metabolite and while there is little

doubt that dysregulation of linoleic acid is discriminatory for all the

reported conditions, we would argue that this property makes lino-

leic acid a relatively non-descript biomarker.

In contrast, METLIN searches corresponding to the biomarkers

choline, betaine and trimethylamine N-oxide amount to a total of

25 searches, and N,N-dimethylsphingosine amounts to 2 search re-

sults. The former biomarkers link diet, and gut microflora to cardio-

vascular disease (Wang et al., 2011) and it might be the number of

complicated natural relationships that keep these molecules off of

the list of the most common dysregulated metabolites. The latter

biomarker, N,N-dimethylsphingosine, is linked to pain (Patti et al.,

2012) but was only found after it was honed in on using a multi-

group analysis strategy. In this case the experimental design allowed

for the extraction of a subtle metabolite change from the back-

ground of nonspecific responses.

Another observation from these experiments is the number of

unknowns being observed. The XCMS data are summarized in

Figure 3. In this histogram we have plotted the 300 most commonly

Fig. 2. Top 24 searched metabolites. Putative identifications are based on ac-

curate neutral mass with the number of potential matches are listed in

parenthesis
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dysregulated m/z values (the white bars indicate contaminant ions

the black bars show identified metabolites the light gray bars are un-

knowns with MS/MS data and the dark gray bars are unknowns

without MS/MS data). The picture given by this plot is that a signifi-

cant number of the metabolite features that are commonly encoun-

tered are unknown. Additionally, we find a large proportion of the

histogram represents known contaminates. This finding underscores

the importance of proper sample handling and the identification of

contamination sources (Weber et al., 2012).

These data are highly dynamic and will evolve with technological

advances and changes in standard procedures. As technology will de-

fine metabolome coverage, it is likely that the current standard prac-

tices will be reflected in the METLIN search data. For example a

relatively recent occurrence is the use of hydrophilic interaction chro-

matography (HILIC) separation technologies coupled to mass spec-

trometry (Buszewski and Noga, 2012; Spagou et al., 2010). HILIC is

used for the analysis of polar metabolites as an alternative to the dom-

inant reversed-phase liquid chromatography (RPLC). Indeed HILIC

has been utilized to study central metabolism (Bajad et al., 2006;

Heiden et al., 2010; Ivanisevic et al., 2013). Although RPLC is still by

far the most utilized separation method, therefore METLIN search

data results are likewise primarily driven by RPLC-MS, which gener-

ally involve hydrophobic molecules.

3 Concluding remarks

Overall this METLIN-XCMS data provides an opportunity to exam-

ine which pathways are commonly related to stress responses and

those that reflect more specific responses. For example linoleic acid

had a high search frequency in METLIN and appears in 273 manu-

scripts in the context of biomarkers, a result that is corroborated in

our XCMS experimental results making it a conserved biomarker.

That is to say it is a general marker for a system under stress that is

conserved across many species under various perturbations. By mak-

ing this data available we are hopefully providing other researchers

with a template for biomarker discovery and translation.
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