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Aberrations in hippocampal neurogenesis are associated with learning and memory, synaptic plasticity
and neurodegeneration in Alzheimer’s disease (AD). However, the linkage between them,
b-amyloidosis and neuroinflammation is not well understood. To this end, we generated a mouse over-
expressing familial AD (FAD) mutant human presenilin-1 (PS1) crossed with a knockout (KO) of the
CC-chemokine ligand 2 (CCL2) gene. The PS1/CCL2KO mice developed robust age-dependent deficits in
hippocampal neurogenesis associated with impairments in learning and memory, synaptic plasticity
and long-term potentiation. Neurogliogenesis gene profiling supported b-amyloid independent pathways
for FAD-associated deficits in hippocampal neurogenesis. We conclude that these PS1/CCL2KO mice are
suitable for studies linking host genetics, immunity and hippocampal function.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The APP, PSEN1 and PSEN2 genes are linked to early-onset famil-
ial Alzheimer’s disease (FAD) (McKhann et al., 2011). Although
numerous autosomal gene mutations have been identified, PSEN1
is the most common (see the AD&FTD Mutation Database, http://
www.molgen.ua.ac.be/admutations). Most of PSEN1 mutations
are missense. FAD mutations affect aggregation-prone forms of
amyloid-b peptide (Ab). These serve to accelerate senile plaque for-
mation (De Strooper et al., 2012). Presenilin 1 and 2 (referred to as
PS1 and PS2) are a catalytic subunit of c-secretase complex, an
aspartyl protease that cleaves type-I transmembrane proteins
including amyloid-b precursor protein (APP), Notch receptors and
ligands, ErbB4 and others (Koo and Kopan, 2004). Autolysosomal
proteolysis processes amyloidgenic APP, and PS1 FAD mutations
disrupt autolysosomal function, leading to increased Ab production
and memory loss (Lee et al., 2010; Nixon, 2013).

c-Secretase plays a pivotal role in cell fate during embryonic
and adult neurogenesis. PS1 contributes to neurogliogenesis as a
component of the c-secretase complex and is ubiquitously
expressed in the brain (Ables et al., 2011; Yoon and Gaiano,
2005). Interestingly, mouse models of FAD-linked PS1 mutations
affect neurogenesis by altering cell proliferation and survival
(Choi et al., 2008; Veeraraghavalu and Sisodia, 2013; Zhang et al.,
2007). However, how neurogenesis is affected remains undefined.

The CC-chemokine ligand 2 (CCL2), also known as monocyte
chemotactic protein-1, is a b-chemokine responsible for recruit-
ment of myeloid-lineage (monocyte-macrophages and microglia)
during infectious and inflammatory diseases (Shi and Pamer,
2011). In AD, CCL2 levels are elevated in plasma, cerebrospinal
fluid and the brain (Ishizuka et al., 1997; Sun et al., 2003). While
Ab stimulates microglia and astrocytes leading to CCL2 production
(El Khoury et al., 2003), deficiencies of CCL2 and its ligand binding
receptor, CCR2, underlie disease onset and tempo (El Khoury et al.,
2007; Kiyota et al., 2013; Naert and Rivest, 2011). Such findings
strongly support a role for chemokine signaling in AD pathogene-
sis. Indeed, CCL2 deficiency accelerates impairments in hippocam-
pal neurogenesis, learning and memory in AD mice overexpressing
human APP and PS1 with FAD mutations (Kiyota et al., 2013).

We now posit that combinations of CCL2 deficiency and PS1
FAD mutations provide synergistic effects on brain function rele-
vant to neurogenesis-associated repair and regenerative processes.
Mice overexpressing human PS1 M146L mutant, but not human
APP FAD mutant, were used to assess the role in hippocampal neu-
rogenesis activities, independent of Ab production, aggregation
and plaque formation. To such an end, mice overexpressing
FAD-mutant PS1 with the CCL2 gene knocked-out (PS1/CCL2KO)
were employed. Most notably the studies show, for the first time,
age-dependent impairments in hippocampal neurogenesis,
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learning and memory functions that are linked to deficits in
long-term potentiation (LTP) but independent of b-amyloidosis
and neuroinflammatory responses. Considering these findings,
the PS1/CCL2KO mouse can be useful in investigating
FAD-associated deficits in hippocampal function.
2. Materials and methods

2.1. Transgenic mice

PS1 mice overexpressing human PS1 with FAD-linked mutation
(M146L line 6.2) were provided by Dr. K. Duff through University of
South Florida (Duff et al., 1996). CCL2KO mice
[B6.129S4-Ccl2tm1Rol/J] were purchased from the Jackson
Laboratory, Bar Harbor, ME, USA. Both mice were maintained in a
B6.129 hybrid background (Kiyota et al., 2009, 2013). Male PS1
mice were crossed with female CCL2KO mice to generate
PS1/CCL2+/�, followed by back-cross with CCL2KO mice to generate
PS1/CCL2KO mice. B6.129 hybrid non-Tg mice were bred in parallel
as age-matched control. All animal studies adhered to the guideli-
nes established by the Institutional Animal Care and Use
Committee at University of Nebraska Medical Center.

2.2. Bromodeoxyuridine (BrdU) administration and tissue preparation

BrdU was intraperitoneally injected (50 mg/kg of body weight)
twice daily every 12 h for 2.5 days to label proliferating cells
(Butovsky et al., 2006). Three weeks after the first BrdU injection,
mice were euthanized with isoflurane and perfused transcardially
with 25 ml of ice-cold PBS. The brains were rapidly removed. The
left hemisphere was immediately dissected and separated into
three parts: cortex, hippocampus and remainder, and frozen on
dry ice for biochemical testing. The right hemisphere was
immersed in freshly depolymerized 4% paraformaldehyde for
48 h at 4 �C, and protected by successive 48-h immersions in 30%
sucrose in 1� PBS. The fixed, cryopreserved brains were sectioned
coronally using a Cryostat (30 lm, Leica, Bannockburn, IL, USA)
with serial sections collected and stored at �80 �C for immunohis-
tochemical tests.

2.3. Neural progenitor cell (NPC) cultivation

NPCs were prepared using NeuroCult Proliferation Kit (StemCell
Technologies, Vancouver, BC, Canada) according to a manufacture’s
instruction. In brief, mouse cortices were dissected at embryonic
day 14 and meninges were removed in ice-cold PBS with 2% glu-
cose. The cortices were mechanically dissociated, filtered with a
40 lm-cell strainer and cultured as neurospheres for 3–5 days in
NeuroCult Proliferation media with supplement and epidermal
growth factor (20 ng/ml) (StemCell Technologies, Vancouver, BC,
Canada). The neurospheres were collected and dissociated to single
cells using NeuroCult Chemical Dissociation Kit (StemCell
Technologies, Vancouver, BC, Canada). The cells were seeded into
poly-D-lysine (100 lg/ml)/laminin (15 lg/ml) (Sigma–Aldrich, St.
Louis, MO)-coated 96-well tissue culture plates at a density of
50,000 cells/well.

2.4. BrdU incorporation assay

NPCs were plated in poly-D-lysine/laminin-coated black/clear
bottom 96-well microplates at a density of 50,000 cells/well, and
cultured in NeuroCult Proliferation media containing BrdU
(10 lM). After incubation for days as indicated, NPCs were fixed
with freshly depolymerized 4% paraformaldehyde, incubated with
2 N HCl to denature DNA, neutralized with 0.1 M sodium borate,
and subjected to a standard immunofluorescence using
FITC-conjugated anti-BrdU antibody (Ab) (mouse monoclonal,
6 lg/ml, Roche Diagnostics, Indianapolis, IN, USA). Fluorescent
intensities for BrdU uptake were measured by SpectraMAX M5
microplate reader (Molecular Devices, Sunnyvale, CA, USA) at exci-
tation and emission wavelengths (Ex/Em) of 488/519 nm for Alexa
Fluor�488 and 350/461 nm for DAPI.

2.5. Immunohistochemistry

Immunohistochemistry was performed as previously described
(Kiyota et al., 2013, 2011) using specific Abs to identify dou-
blecortin (Dcx, goat polyclonal, 1:500, Santa Cruz Biotechnology,
Santa Cruz, CA, USA) and c-fos (rabbit polyclonal, 1:5000,
Calbiochem, Gibbstown, NJ). Immunodetection was visualized
using biotin-conjugated anti-goat or anti-rabbit IgG as a secondary
Ab, followed by incubation with Vectastain ABC Elite kit (Vector
Laboratories, Burlingame, CA, USA) and 3,30-diaminobenzidine
(DAB) substrate kit (Vector Laboratories, Burlingame, CA, USA).
Images were captured using DP Controller and DP Manager with
a DP71 digital camera (Olympus, Orangeburg, NY, USA) attached
to a Nikon Eclipse TE300 inverted microscope (Nikon, Melville,
NY, USA).

2.6. Immunofluorescence

Immunofluorescence was performed as previously described
(Kiyota et al., 2013, 2011). Brain sections were co-incubated with
FITC-conjugated anti-BrdU (mouse monoclonal, 6 lg/ml, Roche
Diagnostics, Indianapolis, IN, USA) and biotin-conjugated
anti-NeuN (mouse monoclonal, 1:500, Millipore, Billerica, MA,
USA), or anti-s100b (rabbit polyclonal, 1:2000, Abcam,
Cambridge, MA, USA), followed by incubation with
Streptavidin-Alexa Fluor�568 (1:1000, Invitrogen, Carlsbad, CA,
USA) or Alexa Fluor�568-conjugated anti-rabbit IgG (H + L,
1:1000). For calbindin, brain sections were incubated with
anti-calbindin D-28k (rabbit polyclonal, 1:20,000, Swant,
Bellinzona, Switzerland), followed by incubation with Alexa
Fluor�568-conjugated anti-rabbit IgG (H + L) (1:1000) and
mounted with Vectashield-DAPI (Vector Laboratories,
Burlingame, CA, USA). Images in the dentate gyrus (DG) of the hip-
pocampus were captured using a Nuance EX multispectral imaging
system (Cambridge Research & Instruments, Woburn, MA, USA).
Calbindin/DAPI images were pre-processed with standard outputs
to a spectral library using Nuance software. Data were then quan-
tified with ImageJ software (NIH, Bethesda, MD, USA) by separating
color channels and converting to grayscale to obtain red (cal-
bindin) and blue (DAPI) staining intensities in the dentate gyrus
(DG) of the hippocampus. Calbindin positive areas were normal-
ized to DAPI intensity to ensure standardization of differences
amongst experimental conditions. Seven brains/mice per group
were analyzed.

2.7. Stereological quantification

We defined cell bodies with DAB signals in the subgranular
zone (SGZ) of the DG as Dcx+ cells (Couillard-Despres et al.,
2005), cells with DAB-stained nuclei in the granular cell layer
(GCL) of the DG as c-fos+ cells, and cells that have both FITC and
Alexa Fluor�568 (NeuN or Gfap) signals in the dentate SGZ as
BrdU+/NeuN+ or BrdU+/Gfap+ cells (Kiyota et al., 2011). Positive
cells were counted in a blinded fashion in every 8th section
through the entire anterio–posterior extent of the DG (total 12 sec-
tions per hippocampus) and estimated using stereological analysis
with Stereo Investigator system with an optical fractionator mod-
ule (MBF Bioscicence, Williston, VT). The system consisted of a high
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sensitivity digital camera (OrcaFlash2.8, Hamamatsu C11440-10C,
Hamamatsu, Japan) interfaced with a Nikon Eclipse 90i microscope
(Nikon, Melville, NY, USA). Within the Stereo Investigator program,
the contour of DG of each section was delineated using a tracing
function. While sections showed shrinkage along the anterio–pos-
terior axis, the extent of shrinkage between different animals was
similar. The dimensions for the counting frame (450 � 450 lm)
and the grid size (500 � 500 lm) were set. The z-plane focus was
adjusted at each section for clarity, and images were automatically
acquired according to each setting. Based on these parameters and
marked cell counts, the Stereo Investigator program by fractionator
module computed the estimated cell population. The estimated
population, cell counts and the Gunderson (m = 1) values were
recorded for each animal and compared between groups using a
statistical software (Prism 4.0, Graphpad Software, San Diego, CA).

2.8. NPC immunofluorescence

Cultured NPCs were chilled on ice, fixed with freshly depoly-
merized 4% paraformaldehyde for 15 min at room temperature,
washed with PBS three times, and subjected to a standard
immunofluorescence using Abs to MAP2 (mouse monoclonal,
1:1000, Millipore, Billerica, MA, USA), GFAP (rabbit polyclonal,
1:2000, DAKO, Carpenteria, CA, USA), TuJ1 (b-Tubulin III, mouse
monoclonal, 1:1000, Sigma, St. Louis, MO USA), s100b (rabbit poly-
clonal, 1:2000, Abcam, Cambridge, MA, USA). Alexa Fluor�488 or
568-conjugated anti-mouse or rabbit IgG (1:1000) was used as a
secondary Ab, followed by 30-min counterstaining with DAPI (all
from Invitrogen, Carlsbad, CA, USA).

2.9. Morris water maze task

The Morris water maze (MWM) task was run to assess spatial
learning and memory performance of the mice as described with
minor modifications (Arendash et al., 2006). Mice were introduced
into the perimeter of a circular water-filled tank (21–22 �C) 110 cm
in diameter and 91 cm in height (San Diego Instruments, San
Diego, CA) with visual cues that were present on the tank walls
as spatial references. The tank was divided into four equal quad-
rants (Q1–4) by lines drawn on the floor. A 10 cm circular plexi-
glass platform was submerged 1 cm deep in Q2 and as such
hidden from the mice. The mice started the task from one of three
quadrants excluding Q2. Four trials were performed per mouse per
day for 10 days. Each trial lasted 1 min and ended when the mouse
climbed onto and remained on the hidden platform for 10 seconds.
The mouse was given 20 s to rest on the platform between trials.
The time taken by the mouse to reach the platform was recorded
as its latency. If the mouse did not reach the platform, 60 s was
recorded as its latency and the mouse was gently guided to the
submerged platform. The time for four trials was averaged and
recorded as a result for each mouse. On day 11, the mice were sub-
jected to a single 60-s probe trial without platform for memory
retention. After each trial, mice were gently wiped using paper
towels to remove aqueous droplets then put back into cages on a
warming pad. The mice started the trial from Q4, the number of
annulus crossings was counted, and swimming path was recorded
using an overhead video camera and Ethovision tracking software
(Noldus Information Technology, Leesburg, VA, USA). The percent
of time spent in each quadrant was calculated using the software.

2.10. RNA extraction and transcript analyses

Total RNA was extracted from the hippocampus of each mouse
using a Dounce homogenizer and the RNeasy Mini Kit (Qiagen,
Valencia, CA, USA). For PCR-based transcript analysis, cDNA from
non-Tg and PS1/CCL2KO mice was synthesized with 1 lg of total
RNA as a template using the RT2 First Strand Kit (Qiagen,
Valencia, CA, USA), and quantitative real-time RT-PCR (RT2-qPCR)
was performed on a thermocycler (Mastercycler Gradient,
Eppendorf Scientific Inc., Westbury, NY, USA) using Mouse
Neurogenesis RT2 Profiler PCR Array (Qiagen, Valencia, CA, USA)
according to the manufacturer’s instruction. Gene expression was
calculated and visualized as a color clustergram using RT2
Profiler PCR Array Data Analysis version 3.5 (http://pcrdataanaly-
sis.sabiosciences.com/pcr/arrayanalysis.php?target=upload,
Qiagen, Valencia, CA, USA). For conventional RT2-qPCR-based gene
expression analysis, 1 lg of total RNA from the hippocampus of
each mouse was reverse-transcribed using Superscript II
(Invitrogen, Carlsbad, CA, USA), and RT2-qPCR was performed on
the thermocycler using RT2 SYBR Green qPCR Master Mix
(Qiagen, Valencia, CA, USA) and gene specific primer sets (forward
and reverse) as follows; Nog (50-GCCAGCACTATCTACACATCC and
50-GCGTCTCGTTCAGATCCTTCTC), Fgf2 (50-GCGACCCACACGTCAAA
CTA and 50-TCCCTTGATAGACACAACTCCTC), Neurod1 (50-ATGACCA
AATCATACAGCGAGAG and 50-TCTGCCTCGTGTTCCTCGT), and
Gapdh (50-AGGTCGGTGTGAACGGATTTG and 50-TGTAGACCATGTA
GTTGAGGTCA). Thermal cycler condition was as follows: 10 min
at 95 �C for activation of polymerase, followed by 40 cycles of a
two-step PCR (95 �C for 15 s and 60 �C for 1 min). Relative expres-
sion for target genes was determined by the DDCT method, and
normalized with Glyceraldehyde-3-phosphate dehydrogenase
(Gapdh) gene expression as an internal control.
2.11. Hippocampal slices and electrophysiological recordings

Mouse hippocampal electrophysiology was performed as previ-
ously described (Anderson et al., 2004). Briefly, mice were anes-
thetized with isoflurane and decapitated at 7 months of age. The
brains were quickly removed from the cranial cavity and placed
into an ice-cold (4 �C) pre-oxygenated artificial cerebrospinal fluid
(ACSF). Hippocampi were dissected out and transverse hippocam-
pal slices (400 lm in thickness) were cut using a tissue chopper.
Slices were kept in a humidified/oxygenated holding chamber at
room temperature for at least 1 h before being transferred to a
recording chamber. In the recording chamber, single hippocampal
slices were submerged and continuously perfused (2.0 ml/minute)
with ACSF containing (in mM): NaCl (124.0), KCl (3.0), CaCl2 (2.0),
MgCl2 (2.0), NaH2PO3 (1.0), NaHCO3 (26.0) and glucose (10.0),
equilibrated with 95% O2 and 5% CO2, pH 7.35–7.45. The tempera-
ture of the perfusate was maintained at 30 ± 1 �C with an auto-
matic temperature controller (Warner Instrument Corp., Hamden,
CT). Field excitatory postsynaptic potentials (fEPSPs) were elicited
by a constant current stimulation (0.05 Hz, 40–120 lA) of Schaffer
collateral-commissural axons using an insulated bipolar tungsten
electrode. Intensity and duration of stimulation were adjusted to
generate approximately 30–40% of a maximal response. Evoked
fEPSPs were recorded in the CA1 dendrite field (stratum radium)
with borosilicated glass microelectrodes, which had a tip diameter
of 2.5–5.0 l and a resistance of 1–5 MX when filled with ACSF and
amplified with an Axopatch-1D amplifier and a Dagan EX4-400
amplifier. Each recording trial was an average of 3 consecutive
sweeps. High frequency stimulation (HFS, 100 Hz, 500 ms) was
delivered twice in 20-s intervals at the same intensity as that
employed in test pulses (low frequency). Electrical signals were fil-
tered at 1 kHz and digitized at a frequency of 5 kHz using a
Digidata 1320 interface (Axon Instruments, Inc.). Data were stored
on a desktop PC and analyzed off-line using pCLAMP 10 software
(Axon Instruments, Inc.). The initial slope of the fEPSPs was
analyzed and expressed in percentage of basal level. In bar
graphs, the magnitudes of LTP were quantified from 50 to 60 min
after HFS.
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2.12. Statistics

All data were normally distributed and presented as mean val-
ues ± standard errors of the mean (SEM). In case of multiple mean
comparisons, the data were analyzed by one-way ANOVA and
Newman–Keuls post hoc or two-way repeated measures ANOVA,
followed by Bonferroni multiple comparison tests using statistics
software (Prism 4.0, Graphpad Software, San Diego, CA). For LTP,
data were analyzed by two-tailed t-test. A value of P < 0.05 was
regarded as a significant difference.
3. Results

3.1. PS1/CCL2KO mice show impaired adult hippocampal neurogenesis

Impairment in hippocampal neurogenesis is associated with
the CCL2KO APP/PS1 mouse phenotype. However, the CCL2KO
phenotype alone is not associated with changes in numbers of
proliferating cells or neuronal survival (Kiyota et al., 2013).
Whether FAD mutations, which affect learning and memory, are
linked to deficits in hippocampal neurogenesis is incompletely
understood. However, the nature of such associations is certainly
critical for understanding AD pathobiology. Such information
could provide insights into disease processes independent of
Ab formation. To this end, we bred human PS1 M146L
mutant-overexpressing (PS1 mice), CCL2KO mice and PS1/CCL
2KO mice while non-transgenic (Tg) mice were propagated as
Fig. 1. Overexpression of a PS1 FAD mutant in CCL2-null mice results in fewer newborn n
Dcx-labeled cells in the DG from 4-month-old (A) and 7-month-old (B) mice. Scale bar, 10
month-old (C) and 7-month-old (D) mice (n = 7 mice per group, 12 sections per mouse, P
Tg or PS1, cP < 0.05 vs CCL2KO, one-way ANOVA, Newman–Keuls post hoc test.
controls. The PS1/CCL2KO mice did not show any growth abnor-
malities or alterations in body or brain weight and sex ratio at
delivery (Supplementary Table 1).

To decipher the links between specific genetic mutations and
disease, we examined doublecortin (Dcx) expression within the
hippocampus. Dcx is a marker for newly generated premature
neurons in the SGZ of the DG serving as a reliable screen for neu-
rogenesis. Notably, the numbers of Dcx+ cells in PS1/CCL2KO mice
were minimally decreased with no significant changes at
4 months of age (Fig. 1A and C). However, Dcx+ cell numbers
were significantly reduced at 7 months of age (Fig. 1B and D).
To substantiate these results, cell proliferative and differentiating
responses in the SGZ were examined following intraperitoneal
injections of BrdU 3 weeks prior to study end. This enabled track-
ing of neural differentiation (NeuN+/BrdU+ cells). Total
BrdU+/NeuN+ cells in the SGZ were decreased in PS1/CCL2KO
mice (Fig. 2A and B). To examine if genetic modification affected
cell proliferation, neural progenitor cells (NPCs) were isolated
from all animal groups and cultured with BrdU, followed by a
BrdU incorporation assay. No difference in BrdU incorporation
was observed between transgenic mouse lines (Fig. 2C).
However, NPCs cultivation showed that numbers of MAP2+ and
TuJ1+ cells were significantly decreased in in vitro differentiated
NPCs from PS1/CCL2KO mice (Fig. 2D–F, H). In contrast, numbers
of glial fibrillary acidic protein (GFAP)+ cells were increased
(Fig. 2D and G). Since GFAP is expressed both in astrocytes and
neural stem cells (Kempermann et al., 2004), s100b was used as
a secondary glial cell marker (Choi et al., 2008). s100b+ cells were
eurons in the DG of the hippocampus. (A and B) Immunohistochemical detection of
0 lm. (C and D) Quantification of the number of Dcx-labeled cells in the DG from 4-
= 0.6728 (C) and 0.0016 (D)). Data are presented as mean ± SEM aa,bbP < 0.01 vs non-



Fig. 2. Overexpression of a PS1 FAD mutant in CCL2-null mice results in reduced adult neurogenesis in the dentate SGZ. (A) Immunofluorescent detection of BrdU and NeuN
double-labeled cells in the SGL from 7-month-old mice. Scale bar, 50 lm. (B) Quantification of the number of BrdU and NeuN double-labeled cells in the SGL from 7-month-
old mice after 3-weeks BrdU labeling (n = 7 mice per group, 12 sections per mouse, P = 0.0051). (C) No difference in BrdU incorporation between the transgenic lines. NPCs
were isolated from all animal groups and cultured with BrdU. Immunofluorescence using FITC-conjugated anti-BrdU antibody was performed. Quantification of BrdU
fluorescent density shows consistent proliferation rate between all lines (n = 3 cultures per each group, P = 0.7462 as determined by two-way ANOVA, Bonferroni post hoc
test). (D and E) Immunofluorescence of MAP2/GFAP (D) or TuJ1/s100b (E)-positive cells differentiated from NPCs. Scale bars, 100 lm. (F–I) Quantification of MAP2 (F), GFAP
(G), TuJ1 (H) or s100b (I)-positive cells. Data are presented as the percentage of total cells in in vitro cultivation (n = 3 cultures per each group from 3 independent
experiments, P = 0.0138 (F), 0.0137 (G), 0.0386 (H) or 0.0056 (I)). (J) Immunofluorescent detection of BrdU and s100b double-labeled cells in the SGL from 7-month-old mice.
Scale bar, 50 lm. (K) Quantification of the number of BrdU and s100b double-labeled cells in the DG from 7-month-old mice after 3-weeks BrdU labeling (n = 7 mice per
group, 12 sections per mouse, P = 0.0015). Data are presented as mean ± SEM a,b,cP < 0.05 vs non-Tg, PS1 or CCL2KO, aa,bb,ccP < 0.01 vs non-Tg, PS1 or CCL2KO, one-way ANOVA,
Newman–Keuls post hoc test.
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increased in PS1/CCL2KO mice (Fig. 2E and I), suggesting that
NPCs from PS1/CCL2KO mice shift to a glial fate. To provide cross
validation for these results, hippocampal sections were
double-stained for BrdU and s100b. BrdU+/s100b+ double positive
cells were increased in PS1/CCL2KO mice (Fig. 2J and K).
Taken together, these results support the idea that these genetic
modifications directly affect cell fates of newly generated neural
cells.



Fig. 3. Morris water maze (MWM) tasks reveal impairments in memory acquisition and retention in PS1/CCL2KO mice. (A–D) MWM task at 2 months of age shows no
difference in learning and memory between the transgenic lines at both MWM acquisition phase (A) where escape latency during a 1-min trial was measured, and MWM
retention phase (B and C). During a one-time probe trial after memory acquisition, number of annulus crossings (B) and duration spent in the goal quadrant between groups
(C) were analyzed. (D) Measurement of average swimming speed of animals. Average swimming speeds are unchanged between groups. (E) MWM acquisition phase at
4 months of age (n = 11 (non-Tg), 10 (CCL2KO), 12 (PS1, PS1/CCL2KO)). PS1/CCL2KO mice show an initial trend to increase escape latencies as compared to other groups after
day 6. (F and G) MWM retention phase. Number of annulus crossings is fewer in PS1/CCL2KO mice as compared to other groups (F), but no significant difference in duration
spent in the goal quadrant between groups (G). (H) Measurement of average swimming speed of animals at 4 months of age. (I) MWM acquisition phase at 7 months of age
(n = 10 (non-Tg, PS1, PS1/CCL2KO), 8 (CCL2KO)). PS1/CCL2KO mice show statistically higher escape latencies as compared to other groups. (J and K) MWM retention phase at
7 months of age. Both number of annulus crossings (J) and percent search time (K) are statistically fewer as compared to other groups. (L) Measurement of average swimming
speed of animals at 7 months of age. Data are presented as mean ± SEM a,b,cP < 0.05, aa,bb,ccP < 0.01, aaa,bbbP < 0.001, a,aa,aaa vs non-Tg, b,bb,bbb vs PS1, c,cc vs CCL2KO, two-way
ANOVA, Bonferroni post hoc (A, E and I) or one-way ANOVA, Newman–Keuls post hoc (F, J and K) test.
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3.2. PS1/CCL2KO mice demonstrate memory and learning impairments

Correlations between memory, learning and adult neurogenesis
were previously investigated (Aimone et al., 2006) including
within the DG of the hippocampus (Deng et al., 2010; Kiyota
et al., 2011; Lledo et al., 2006). As significant changes in hippocam-
pal neurogenesis were observed in PS1/CCL2KO mice, we investi-
gated if such changes are linked to impairments in learning and
memory. To this end, we employed a 10-day Morris water maze
(MWM) task to assess learning and memory acquisition, and a
1-day probe test for memory retention. We observed no difference
in memory acquisition and retention between all groups at
2 months of age (Fig. 3A–C). At 4 months of age, PS1/CCL2KO mice
group showed impaired memory acquisition (Fig. 3E). This
included annulus crossing in the target quadrant that contained a
submerged platform observed during the memory acquisition
phase (Fig. 3F). However, PS1/CCL2KO mice showed similar spatial
preference amongst each of the animal groups for the target



Fig. 4. Overexpression of a PS1 FAD mutant in CCL2-null mice leads to changes in hippocampal gene expression related to neurogenesis and synaptic function. (A) Heat map
depicting fold changes in neurogenesis-related genes in the hippocampus between non-Tg and PS1/CCL2KO mice (n = 4 mice per group). Shades of green and magenta show
down-regulated and up-regulated genes, respectively. (B–D) A conventional RT2-qPCR was performed to measure Nog (B), Fgf2 (C) and Neurod1 (D) expression using primer
sets and synthesized cDNA with total RNA isolated from the hippocampus of each mouse (n = 4 mice per group, P = 0.0392 (B), 0.0007 (C) and 0.0029 (D)). Data are presented
as mean ± SEM a,b,cP < 0.05, aa,bb,ccP < 0.01, aaaP < 0.001, a,aa,aaa vs non-Tg, b,bb vs PS1, c,cc vs CCL2KO, one-way ANOVA, Newman–Keuls post hoc test. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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quadrant (Fig. 3G). At 7 month of age, PS1/CCL2KO mice group
showed longer latency during a 10 day observation period
(Fig. 3I), lower number of annulus crossings (Fig. 3J) and no quad-
rant preference (Fig. 3K), suggesting significant impairments in
learning and memory. Average swimming speeds were unchanged
between groups at all time points, ruling out the possibility of dif-
ferences in their swimming abilities distorting the data (Fig. 3D, H
and L). The data support the notion that learning and memory per-
formance in PS1/CCL2KO mice worsen in an age-dependent
manner.
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3.3. Neurogenesis-related neuronal gene profiling

As deficits in learning, memory and hippocampal neurogenesis
in PS1/CCL2KO mice were observed, we next investigated the
molecular mechanisms underlying these observations. To this
end, gene expression in the hippocampus of PS1/CCL2KO mouse
group were profiled and compared to non-Tg mouse groups using
a neurogenesis-linked PCR array (Fig. 4A and Supplementary data
1). Downstream genes of Notch signaling were deregulated
(increase in Hes1, Hey1, decrease in Ascl1) but not to the point of
statistical significance. Although neurotrophic factors (Bdnf, Nt3)
that are associated with synaptic function and memory (Gao
et al., 2010; Shimazu et al., 2006) were reduced, significant differ-
ences were found in decreased Fgf2 and increased Nog expression
in the PS1/CCL2KO mice. While most of neurogenic genes showed
no change in gene expression, Neurod1 was reduced with a signif-
icant difference in the PS1/CCL2KO mice. The genes were validated
using a conventional RT-qPCR (Fig. 4B–D). Importantly, the data set
supported changes in synaptic function-related genes linked to
memory formation.

The proto-oncogene c-fos is one of the immediate-early genes
that are induced by neural activity and behavior, and classically
known to play a role in the neuroplastic mechanisms required
Fig. 5. Overexpression of a PS1 FAD mutant in CCL2-null mice affects expression of lear
labeled cells in the dentate GCL at 7 months of age. Scale bar, 100 lm. (B) Calbindin expre
Quantification of the number of c-fos-labeled cells (C, n = 7 mice per group, 12 sections
sections per mouse, P = 0.0046). Data are presented as mean ± SEM a,b,cP < 0.05, aaP < 0.01,
for memory consolidation (Kiyota et al., 2011; Palop et al., 2003).
To address if memory impairment in PS1/CCL2KO mice associated
with c-fos expression, c-fos-immunoreactive (c-fos+) neurons were
evaluated in the dentate GCL (Fig. 5A). Importantly, the number of
c-fos+ neurons in PS1/CCL2KO mice was significantly reduced com-
pared to other mice (Fig. 5C).

The calcium-binding protein calbindin-D28 k can regulate
intracellular calcium levels essential for hippocampal learning
and memory (Molinari et al., 1996). Therefore, we measured cal-
bindin in the DG (Fig. 5B). The expression level of calbindin in
PS1/CCL2KO mice was reduced (Fig. 5D). These data support learn-
ing and memory and synaptic gene deficits for PS1/CCL2KO mice.

3.4. LTP Impairments in PS1/CCL2KO mice

Synaptic plasticity and LTP underlie learning and
memory-dependent behavior (Malenka and Bear, 2004). To assess
whether PS1/CCL2KO impairs synaptic transmission we studied
mouse LTP in Schaffer-collateral CA1 synaptic pathways from hip-
pocampal brain slices (Fig. 6A). High frequency stimulation of this
pathway produced robust LTP as recorded in the CA1 hippocampal
region from non-Tg mice. An average magnitude of 194.8 ± 11.5%
(Fig. 6B, n = 6, mean ± SEM) of baseline when measured from 50
ning and memory-related molecules. (A) Immunohistochemical detection of c-fos-
ssion in the DG of the hippocampus at 7 months of age. Scale bar, 200 lm. (C and D)
per mouse, P = 0.0092) and calbindin expression levels (D, n = 7 mice per group, 10
a,aa vs non-Tg, b vs PS1, c vs CCL2KO, one-way ANOVA, Newman–Keuls post hoc test.



Fig. 6. LTP measures in PS1/CCL2KO mice. (A) Time courses and average magnitudes of LTP recorded in the CA1 region of hippocampal slices prepared from non-Tg (h), PS1
(N), CCL2KO (r) and PS1/CCL2KO (d) animals. The graph plots the initial slope of the evoked fEPSPs in response to constant current stimuli. HFS (100 Hz, 500 ms � 2) was
delivered at the time indicated by an arrow. Each point in this graph represents an average of 6 slices. The representative fEPSPs taken at 10 min before and at 50 min after
HFS (as indicated by letters a and b) in one of the non-Tg (left) and one of the PS1/CCL2KO (right) slices are shown below the LTP time course. Note that HFS produced a
significant increase of fEPSP in non-Tg slice, but not in PS1/CCL2KO slice. (B) A bar graph showing the average LTP magnitudes measured from 50 to 60 min after HFS. Note a
significant reduction of LTP magnitude in the hippocampal slices prepared from PS1/CCL2KO animals. Data are presented as mean ± SEM *P < 0.05 vs non-Tg, two-tailed t-test.
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to 60 min after HFS was elicited. In contrast, the average magni-
tude of LTP recorded in PS1/CCL2KO animals was 158.5 ± 10.3%
(n = 6) of baseline. The difference was statistically significant
(P < 0.05), supporting the fact that PS1/CCL2KO impairs LTP. In con-
trast, the average LTP magnitudes recorded in PS1 and CCL2KO ani-
mals were 179.7 ± 8.2% and 175.9 ± 14.2% of baseline, respectively.
The differences were not statistically significant when compared to
the average magnitude recorded in non-Tg animals.
4. Discussion

Genetically modified mice overexpressing a PS1 FAD mutant on
a CCL2 null background significantly decreased hippocampal neu-
rogenesis and affected age-dependent learning and memory.
Synergy between PS1 mutation and the CCL2KO was shown.
Indeed, no change in either neurogenesis or deficits in learning
and memory was observed in Tg mice with single gene modifica-
tions (PS1 and CCL2KO mice). Although most Tg mice with human
APP FAD mutations show impaired neurogenesis, this is explained
largely by a presence of b-amyloidosis. Interestingly, divergent
reports have emerged in regards to the role played by PS1 FAD
mutants in NPC proliferation and survival, notably in the SGZ of
the DG (Elder et al., 2010; Winner et al., 2011). PS1 P117L mutation
does not affect NPC proliferation but impairs BrdU+ bIII-tubulin+

neuronal survival (Wen et al., 2004). PS1 A246E mutation increases
NPC proliferation but does not affect BrdU+/NeuN+ neuronal num-
bers (Chevallier et al., 2005). In PS1 M146L mice, no change in NPC
proliferation and survival was observed (Choi et al., 2008) support-
ing the current study findings. However, PS1 M146L mice with
CCL2 deficiency led to decreased Dcx+ and BrdU+/NeuN+ neuronal
numbers at 7 months of age. This suggests a potential synergistic
effect between the PS1 mutation and the CCL2KO for hippocampal
neurogenesis.

Recent studies have correlated memory function to adult neuro-
genesis in the DG of the hippocampus (Lee et al., 2012). Although it
is still unclear if neurogenesis impairments contribute to disease
progression, hippocampus-linked deficits in learning and memory
formation are linked to the pathobiology of neurodegenerative dis-
orders. Notably, AD mouse models with b-amyloidosis in the brain
show memory impairment associated with impaired hippocampal
neurogenesis (Zhao et al., 2008). In this study, PS1/CCL2KO mice
showed impairments in learning, memory and neurogenesis
despite absence of Ab deposits and endogenous Ab42 level that is
the same as in PS1 mice, suggesting that those deficits are not
due to b-amyloidosis, including Ab toxicity, altered Ab42/40 ratio
and tau phosphorylation (Supplementary Fig. 1). In addition, we
did not observe any neuroinflammatory responses that included
changes in interleukin (IL)-1b, IL-6; Supplementary Figs. 2 and 3)
or IL-4-mediated microglial activation (Choi et al., 2008) (data
not shown), suggesting that the deficits are not due to neuroin-
flammation. Surprisingly we observed memory loss starting as
early as 4 months of age, but only a slight decrease in the number
of Dcx+ cells in the SGZ of the DG. These data suggest that impaired
learning and memory performance precedes reduced
neurogenesis.

Notch signaling is a well-known conserved pathway affecting
neural stem cell development (Louvi and Artavanis-Tsakonas,
2006). In the study, GFAP and s100b+ cells rather than NeuN+ and
MAP2+ cells were increased in the SGZ and NPCs of PS1/CCL2KO
group, but the proliferation rate did not change. Thus, considera-
tion of the signaling pathway how the NPCs are regulated is essen-
tial. Gene profiling in the hippocampus demonstrated that Notch
signaling components were positively regulated, and Neurod1
was decreased, suggesting that NPCs shift to a glial fate (astro-
cytes). However, we did not observe any strong distinction for
those genes. The lack of the distinction might be due to a chronic
but not acute response of the pathway, and indicate involvement
of other regulatory systems.

Interestingly, the profiling revealed significantly increased Nog
expression in PS1/CCL2KO mice over non-Tg control. Notably, nog-
gin is a secreted extracellular antagonist like others, chordin and
follistatin, for bone morphogenetic protein (BMP) signaling. It
binds to BMP ligands to block interaction with BMP receptors, to
promote neurogenesis (Gaulden and Reiter, 2008). However, our
data showed decreased rather than promoted neurogenesis in
PS1/CCL2KO mice as compared to other groups, suggesting that
the up-regulation of noggin does not serve to inhibit BMP signaling
but rather to participate in another task: the regulation of synaptic
plasticity (Sun et al., 2007), since there is no significant change in
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expression of BMP signaling-target genes such as Pax6 that are typ-
ically involved in neural tube development (Liu and Niswander,
2005). This alternate pathway could explain the observed impair-
ments in learning and memory that occur in PS1/CCL2KO mice
despite up-regulation of Nog. Indeed, impairments in learning
and memory are well associated with reduced c-fos+ neurons, cal-
bindin expression, and LTP (Kiyota et al., 2011; Molinari et al.,
1996; Palop et al., 2003). This suggests that such changes in
c-fos, calbindin and LTP in PS1/CCL2KO mice reflect reduced synap-
tic plasticity and memory consolidation. Moreover, decreased Fgf2
expression supports the aforementioned, since boosting Fgf2
expression results in improved synaptic plasticity in the hip-
pocampus of AD mice (Kiyota et al., 2011), which is a reflective
result for our current study.

Overall, we demonstrate that PS1 FAD mutation results in
impairments in hippocampal neurogenesis associated with mem-
ory dysfunction in concert with CCL2-deficiency. These impair-
ments are caused by the PS1 mutation and the CCL2KO influence
hippocampal synaptic plasticity. Taken together, these findings
support the idea that CCL2 has a critical role in not only chemotaxis
in general, but also in specification of cell fate in hippocampal neu-
rogenesis. In parallel, the PS1/CCL2KO mice have the potential to
be developed as a mouse model for hippocampal neurogenesis
for multiple animal systems.
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