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Abstract

This special edition of the Journal of Neuroimmune Pharma-
cology focuses on the leading edge of metabolomics in brain
metabolism research. The topics covered include a

metabolomic field overview and the challenges in neurosci-
ence metabolomics. The workflow and utility of different an-
alytical platforms to profile complex biological matrices that
include biofluids, brain tissue and cells, are shown in several
case studies. These studies demonstrate how global and
targeted metabolite profiling can be applied to distinguish dis-
ease stages and to understand the effects of drug action on the
central nervous system (CNS). Finally, we discuss the impor-
tance of metabolomics to advance the understanding of brain
function that includes ligand-receptor interactions and new
insights into the mechanisms of CNS disorders.
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Metabolomics represents a final piece of the ‘omic puzzle in
systems biology. The metabolome is defined as a complete set
of metabolites (or low-molecular-weight biomolecules) that
provide biologically relevant endpoints of metabolic process-
es encompassing the products of interaction between gene
expression, protein expression and the cellular environment
(Patti et al. 2012; Zamboni et al. 2015). Advances in genomics
provide the link between human disease and its genome ori-
gins. Metabolomics characterizes genetic risk factors for dis-
ease by its abilities to reveal changes that take place as a net
result of interactions between the genome and the environ-
ment and as such bridges the gap between genotype and phe-
notype (Kaddurah-Daouk et al. 2008) (Fig. 1). Therefore
metabolomics, as an ultimate counterpart to genomics, tran-
scriptomics and proteomics, could have considerable impact
on our understanding of the cellular and molecular bases for
disease. The rapidly growing interest to explore the metabo-
lome is led by the advancements in analytical technology, the
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development of metabolite databases, and computational tools
that enable the generation and analysis of big data sets
(Benton et al. 2015; Johnson et al. 2015a; Rinehart et al.
2014; Tautenhahn et al. 2012) (Fig. 2).

Brain function has a high metabolic cost, reaching 20 % of
the whole-body energy consumption in humans (Mink et al.
1981). Energy demands have to be met to insure finely tuned
signaling activity and cognitive function. Recent evolutionary
biology findings suggest a massive increase in the expression
of genes involved in energy production in the human cortex
(when compared to other nonhuman primates) and have stim-
ulated rethinking of brain energy metabolism and its role in
signaling activity and brain function (Caceres et al. 2003;
Magistretti and Allaman 2015). Alterations in central carbon
metabolism (i.e., glycolysis, oxidative phosphorylation, pen-
tose phosphate pathway) in addition to signal transmission
play a key role in the pathogenesis of neurodegenerative

(Alzheimer’s and Parkinson’s diseases, Huntington’s disease)
and psychiatric (depression, schizophrenia, bipolar disease)
CNS disorders. Small molecules rigorouslymediate metabolic
processes and signaling pathways. These include, but are not
limited to, energy currency metabolites, neurotransmitters,
secondary messengers and cell membrane constituents.
Among different molecular assays, noninvasive neuroimaging
techniques like positron emission tomography (PET) and func-
tional magnetic resonance imaging (fMRI) have been widely
used to study changes in brain metabolism through themeasure-
ments of cerebral blood flow, glucose utilization and oxygen
consumption (Lin and Rothman 2014; Magistretti and Allaman
2015). In addition, high-field magnetic resonance spectroscopy
(MRS) has permitted the visualization of metabolite distribu-
tions and metabolic flux analysis in vivo by the introduction
of stable isotope-labeled compounds (Duarte et al. 2012; Lin
and Rothman 2014). However, these techniques are mostly a

Fig. 1 Central dogma of molecular biology and systems biology. Metabolites are biologically relevant endpoints that encompass the downstream
products of cellular activity. They serve as a direct read out of the biochemical activity closely associated with phenotype of the biological system

Fig. 2 Accelerated global profiling by simultaneous quantification and
identification of metabolites, followed by pathway mapping. The
advances in mass spectrometers enable the sequential collection of high
quality MS (for comparative quantitative analysis of different groups of

samples) and MS/MS data (for MS/MS matching to facilitate metabolite
identification) in a single run. ATPwas identified andmapped onto purine
metabolism pathway among other dysregulated metabolites (red color
tone – level of significance)

392 J Neuroimmune Pharmacol (2015) 10:391–395



priori hypothesis-based and limit neurochemical profiling to a
small subset of known highly abundant metabolites, such as
glucose, lactate, N-acetyl aspartate (NAA), myo-Inostiol, crea-
tine, choline, glutamate and glutamine.

Global metabolomics, as an alternative screening approach
complements neuroimaging techniques by providing unbi-
ased monitoring of a broad range of changes in brain metab-
olism, including low abundant and trace metabolites, from
organismal (systemic blood analysis) and whole-organ level
down to regional, cellular and sub-cellular level. In this con-
text metabolomics can provide powerful tools to measure ear-
ly biochemical changes and indicate metabolic pathway shifts
associated with CNS disorders (Kaddurah-Daouk et al. 2008;
Zamboni et al. 2015). This more comprehensive overview of
changes will favor the understanding of mechanisms of spe-
cific disorders, the identification of biomarkers for early diag-
nosis of disease, deciphering and monitoring of the disease
progression and/or drug response and ultimately translation
of findings to clinic by defining new molecular targets for
therapeutic intervention (Chen-Plotkin 2015; Wood 2014).

Brain metabolomics is particularly challenging due to the
intrinsic inaccessibility (encapsulation within the blood–
brain-barrier-BBB) of the brain and the high-energy demand
necessary tomaintain tissue function. Different analytical plat-
forms, NMR, GC/MS and LC/MS-based, have been used to
perform the metabolite profiling of biofluids (the cerebrospi-
nal fluid, plasma, saliva, urine), brain tissue (from biopsies or
post-mortem brain analysis) and brain cell lines. Several stud-
ies have shown that the metabolite biomarkers can be detected
in easily accessible biofluids, however it is not clear to which
extent the biofluid’s content reflects the tissue activity due to
the limited passage of manymetabolites across the BBB (Grif-
fin and Salek 2007). Microdialysis of metabolites from a brain
tissue represents a compelling innovative strategy to assess the
metabolite concentrations directly from the brain interstitial
fluid, as opposed to measuring the concentrations in the blood

plasma or serum (Kao et al. 2015). When the brain tissue is
available from animal models, the intelligent experimental de-
sign with a highlight on an adequate metabolism quenching
strategy (i.e., focused beam microwave irradiation - FBMI, fun-
nel freezing) is essential for brain sample preparation (Epstein
et al. 2013; Griffin and Salek 2007; Ivanisevic et al. 2014).
Human brain tissue is difficult to procure, especially in the case
of healthy control samples, and the post-mortem brain studies
are further complicated through metabolic alterations that may
occur in hypoxic conditions during the postmortem delays.
When planning the experimental design in brain metabolomics,
the high complexity of brain is also worth considering, including
regional and cellular heterogeneity with distinctive metabolic
profiles, like predominant glycolytic profile of astrocytes vs.
oxidative profile of neurons (Magistretti and Allaman 2015).
Therefore, regional brain profiling and comprehensive studies
of different cell types are strongly encouraged in order to char-
acterize their complementarity in brain function. Subregional
and even cellular and subcellular resolution can be achieved by
mass spectrometry imaging (i.e., nanostructure surface based –
NIMS (Kurczy et al. 2015), secondary ion based – SIMS
(Kurczy et al. 2010)) thus adding information about spatial dis-
tribution of metabolites that is obscured by the gross analysis of
the whole (Ivanisevic et al. 2014) (Fig. 3).

The papers from this thematic issue cover several case stud-
ies where different analytical platforms and metabolomic ap-
proaches were applied to characterize the signatures of CNS
disorders in humans, to distinguish neurochemical changes in
genetically modified animal models, to investigate antimetabo-
lites and drug response for treatement of neuropathic pain and
schizoprenia, and to better define the role of GABA receptors.
Drs. Laetitia Davidovic and Marc-Emmanuel Dumas discuss
the advancements in the field of metabolomics that allowed for
global metabolite profiling. They highlight the fact that the
reports of global metabolite profiling have moved forward the
characterization of CNS disease signatures showing that brain

Fig. 3 Nanostructure Imaging Mass Spectrometry (NIMS) of mouse
brain. Extracted brain map shows the white-gray matter distribution of
one brain sulfatide. Image was acquired from a 2 uM brain section that
was mounted on etched silicon chip, coated with perfluorinated-amino

initiator, prior to imaging using laser desorption ionization technique in
negative ionization mode. Data were acquired at 50 uM-spatial resolution
of a laser beam
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metabolism disorders are not only related to altered signal trans-
duction but also the significant variations in central carbon
pathways (Dumas and Davidovic 2015). Following this com-
prehensive review that focuses on key studies in the field of
brain metabolomics, Dr. Joseph L. McClay and his collabora-
tors present a story of global, murine brain tissue metabolomics
to decipher the response and mechanism of action of an anti-
psychotic drug in the treatment of schizophrenia. They
further demonstrate the power of global metabolomic screening
to reveal the disruption of sphingolipid metabolism during
chronic haloperidol administration (McClay et al. 2015). They
also confirm the impairment of NAAG signaling in antipsy-
chotic drug mechanisms of action. In a similar research line,
Dr. Caroline H. Johnson and her collaborators explored the
effects of two different therapeutics for neuropathic pain relief
(Johnson et al. 2015b). In addition Dr. AlexMountfort Dickens
and his collaborators demonstrate the sensitivity of biofluid
metabolomic analysis to discriminate between progressive dis-
ease stages and validate the changes that were conserved in
humans and the mouse model (Dickens Mountfort et al.
2015). Finally, Dr. Caroline Rae and her team present the
targeted NMR-based pharmacometabolomic approach that re-
vealed the distinct metabolic activity of GABAρ receptors im-
plying their specific physiological function (Rae et al. 2015).

To conclude, with regards to challenges encountered in the
application of large-scale, high-throughput global
metabolomic approaches, it is important to note the value of
targeted validation, as a foundation toward translational re-
search (Fig. 4). Although the snapshots of biofluid or tissue
metabostasis (metabolite homeostasis) can be obtained readily
using the global approach, the limitations of this approach
(i.e., bias due to matrix effects, ionization efficiency and me-
tabolite identification bottleneck) have to be addressed and the
results validated via a targeted approach. In-depth investiga-
tion of findings from an untargeted study should be followed
up through the targeted study of the identified affected and
interconnected biochemical pathways (Wood 2014). The inte-
gration of findings from metabolomics along with those from
other omic technologies and non-invasive in vivo imaging
techniques (i.e., PET, fMRI, MRS), followed up by stringent
targeted investigation of altered biochemical pathways in
complex disease states, like many neurodegenerative and psy-
chiatric diseases, will provide valuable insights into molecular
mechanisms of disease as well as potential biomarkers for
disease diagnosis. The means to study the variation in hetero-
geneous patient metabotypes (e.g., with regards to drug re-
sponse) are furthermore opening the road toward personalized
medicine.

Fig. 4 Metabolomic workflow. Global profiling summarizes the
experimental design with respect to metabolism quenching and global
LC/MS profiling of different sample groups. LC/MS data acquisition is
followed by retention time correction for chromatogram alignment and
visualization of dysregulated metabolite features. Metabolite features

whose levels were significantly changed in disease vs. control samples
are than filtered out and identified by MS/MS matching. The identified
metabolites are quantified by targeted MRM analysis using standard
compounds
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